9 resultados para Distributed Lag Non-linear Models

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies reveal that in recent decades a decrease in sleep duration has occurred. Social commitments, such as work and school are often not aligned to the "biological time" of individuals. Added to this, there is a reduced force of zeitgeber caused by less exposure to daylight and larger exposure to evenings. This causes a chronic sleep debt that is offset in a free days. Indeed, a restriction and extent of sleep called "social Jet lag" occurs weekly. Sleep deprivation has been associated to obesity, cancer, and cardiovascular risk. It is suggested that the autonomic nervous system is a pathway that connects sleep problems to cardiovascular diseases. However, beyond the evidence demonstrated by studies using models of acute and controlled sleep deprivation, studies are needed to investigate the effects of chronic sleep deprivation as it occurs in the social jet lag. The aim of this study was to investigate the influence of social jet lag in circadian rest-activity markers and heart function in medical students. It is a cross-sectional, observational study conducted in the Laboratory of Neurobiology and Biological Rhythmicity (LNRB) at the Department of Physiology UFRN. Participated in the survey medical students enrolled in the 1st semester of their course at UFRN. Instruments for data collection: Munich Chronotype Questionnaire, Morningness Eveningness Questionnaire of Horne and Östberg, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Actimeter; Heart rate monitor. Analysed were descriptive variables of sleep, nonparametric (IV60, IS60, L5 and M10) and cardiac indexes of time domain, frequency (LF, HF LF / HF) and nonlinear (SD1, SD2, SD1 / SD2). Descriptive, comparative and correlative statistical analysis was performed with SPSS software version 20. 41 students participated in the study, 48.8% (20) females and 51.2% (21) males, 19.63 ± 2.07 years. The social jet lag had an average of 02: 39h ± 00:55h, 82.9% (34) with social jet lag ≥ 1h and there was a negative correlation with the Munich chronotype score indicating greater sleep deprivation in subjects prone to eveningness. Poor sleep quality was detected in 90.2% (37) (X2 = 26.56, p <0.001) and 56.1% (23) excessive daytime sleepiness (X2 = 0.61, p = 0.435). Significant differences were observed in the values of LFnu, HFnu and LF / HF between the groups of social jet lag <2h and ≥ 2h and correlation of the social jet lag with LFnu (rs = 0.354, p = 0.023), HFnu (rs = - 0.354 , p = 0.023) and LF / HF (r = 0.355, p = 0.023). There was also a negative association between IV60 and indexes in the time domain and non-linear. It is suggested that chronic sleep deprivation may be associated with increased sympathetic activation promoting greater cardiovascular risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in ultraviolet radiation (UV) at surface, the high incidence of non-melanoma skin cancer (NMSC) in coast of Northeast of Brazil (NEB) and reduction of total ozone were the motivation for the present study. The overall objective was to identify and understand the variability of UV or Index Ultraviolet Radiation (UV Index) in the capitals of the east coast of the NEB and adjust stochastic models to time series of UV index aiming make predictions (interpolations) and forecasts / projections (extrapolations) followed by trend analysis. The methodology consisted of applying multivariate analysis (principal component analysis and cluster analysis), Predictive Mean Matching method for filling gaps in the data, autoregressive distributed lag (ADL) and Mann-Kendal. The modeling via the ADL consisted of parameter estimation, diagnostics, residuals analysis and evaluation of the quality of the predictions and forecasts via mean squared error and Pearson correlation coefficient. The research results indicated that the annual variability of UV in the capital of Rio Grande do Norte (Natal) has a feature in the months of September and October that consisting of a stabilization / reduction of UV index because of the greater annual concentration total ozone. The increased amount of aerosol during this period contributes in lesser intensity for this event. The increased amount of aerosol during this period contributes in lesser intensity for this event. The application of cluster analysis on the east coast of the NEB showed that this event also occurs in the capitals of Paraiba (João Pessoa) and Pernambuco (Recife). Extreme events of UV in NEB were analyzed from the city of Natal and were associated with absence of cloud cover and levels below the annual average of total ozone and did not occurring in the entire region because of the uneven spatial distribution of these variables. The ADL (4, 1) model, adjusted with data of the UV index and total ozone to period 2001-2012 made a the projection / extrapolation for the next 30 years (2013-2043) indicating in end of that period an increase to the UV index of one unit (approximately), case total ozone maintain the downward trend observed in study period

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several mobile robots show non-linear behavior, mainly due friction phenomena between the mechanical parts of the robot or between the robot and the ground. Linear models are efficient in some cases, but it is necessary take the robot non-linearity in consideration when precise displacement and positioning are desired. In this work a parametric model identification procedure for a mobile robot with differential drive that considers the dead-zone in the robot actuators is proposed. The method consists in dividing the system into Hammerstein systems and then uses the key-term separation principle to present the input-output relations which shows the parameters from both linear and non-linear blocks. The parameters are then simultaneously estimated through a recursive least squares algorithm. The results shows that is possible to identify the dead-zone thresholds together with the linear parameters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amenities value provided by green areas, sea, river and natural landscapes are hardly perceived and incorporated on urban planning and development. In this work, distance and view to protected and non-protected green areas, sea and river were evaluated as to how they increase the housing prices in Natal. Hedonic pricing methods were used with linear models to estimate the marginal implicit value of environmental, residential and neighborhood features. Results on Chapter 1 demonstrate the view to the sea and protected natural areas were largely capitalized on housing prices, while non-protected natural areas didn t display such effect. Housing prices also increase when close to the sea or to parks entrance. However, housing prices fall when houses are near non-protected natural areas. When estates with sea view were excluded, the protected natural areas view and a longer distance to non-protected natural areas increased dwelling prices. Results on Chapter 2 point the sea view as an hedonic variable the contributes strongly to the property selling prices, even though not always as the greatest contributor; furthermore, the property proximity to Dunas Park or City of the Park entrance increases its price, as does closeness to Dunas Park, view to City of the Park or Dunas Park. On the other hand, selling prices diminish if properties are close to City of the Park or Morro do Careca. Results on this study confirm the hedonic pricing methods is an important intrument, capable of revealing to popullation the importance of enviromental amenities and can be used by public managers for creating public policies for conservation and restoration projects