4 resultados para Discrete time system
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
With the technology progess, embedded systems using adaptive techniques are being used frequently. One of these techniques is the Variable Structure Model- Reference Adaptive Control (VS-MRAC). The implementation of this technique in embedded systems, requires consideration of a sampling period which if not taken into consideration, can adversely affect system performance and even takes the system to instability. This work proposes a stability analysis of a discrete-time VS-MRAC accomplished for SISO linear time-invariant plants with relative degree one. The aim is to analyse the in uence of the sampling period in the system performance and the relation of this period with the chattering and system instability
Resumo:
This paper presents a contribution to the international Verified Software Repository effort through the formal specification of the microkernel FreeRTOS real-time system. Such specification was made in abstract level making use of the B method . For thus, properties of the microkernel were chosen and selected as specification requisites, which was constructed centered at the functionalities responsible for the utilization of these properties. This properties weres setting as specification requirements. The specification was constructed modeling the function of microkernel that implement this properties. This work intended to encourage the formal verification of FreeRTOS and also contribute to the formal creation of a microkernel real-time systems, based in FreeRTOS. Furthermore, this model brings a formal documentation point view of the microkernel, demonstrating features and how this internal states is changing. Finally, this work could be an example of specification of the actual system by the B method.
Resumo:
In the work reported here we present theoretical and numerical results about a Risk Model with Interest Rate and Proportional Reinsurance based on the article Inequalities for the ruin probability in a controlled discrete-time risk process by Ros ario Romera and Maikol Diasparra (see [5]). Recursive and integral equations as well as upper bounds for the Ruin Probability are given considering three di erent approaches, namely, classical Lundberg inequality, Inductive approach and Martingale approach. Density estimation techniques (non-parametrics) are used to derive upper bounds for the Ruin Probability and the algorithms used in the simulation are presented
Resumo:
This work concerns a refinement of a suboptimal dual controller for discrete time systems with stochastic parameters. The dual property means that the control signal is chosen so that estimation of the model parameters and regulation of the output signals are optimally balanced. The control signal is computed in such a way so as to minimize the variance of output around a reference value one step further, with the addition of terms in the loss function. The idea is add simple terms depending on the covariance matrix of the parameter estimates two steps ahead. An algorithm is used for the adaptive adjustment of the adjustable parameter lambda, for each step of the way. The actual performance of the proposed controller is evaluated through a Monte Carlo simulations method.