4 resultados para Diffusive epidemic process
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we study a connection between a non-Gaussian statistics, the Kaniadakis
statistics, and Complex Networks. We show that the degree distribution P(k)of
a scale free-network, can be calculated using a maximization of information entropy in
the context of non-gaussian statistics. As an example, a numerical analysis based on the
preferential attachment growth model is discussed, as well as a numerical behavior of
the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive
epidemic process (DEP) on a regular lattice one-dimensional. The model is composed
of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion
rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This
model belongs to the category of non-equilibrium systems with an absorbing state and a
phase transition between active an inactive states. We investigate the critical behavior of
the DEP using an auto-adaptive algorithm to find critical points: the method of automatic
searching for critical points (MASCP). We compare our results with the literature and we
find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases
DA =DB, DA
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)