22 resultados para Diesel fuels.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was investigate the consolidation of the biodiesel fuel used in (a) engines of urban and intercity bus companies, (b) a stationary engine. It was necessary to investigate and analyze, technologically, if the biodiesel fuels were presenting troubleshooting relative to wear of parts lied to fuel and to evaluate the consumption fluctuations of this fuel. The urban and intercity bus companies, localized in Natal, Rio Grande do Norte state, Brazil, had 41 and 12 vehicles, respectively. It were analyzed datasheet of each one vehicle during three years, since 2008 until 2010 and were interviewed the management of the maintenance team of bus companies relative to aspects concerning the substitution of the diesel fuel by the B5 biodiesel. The second aim of this study was visually inspect the wear of the parts directly lied to combustion process. For this reason, it was investigated a stationary engine, manufactured by Branco BD5, 5 HP of power, fueled by (a) diesel, (b) biodiesel B5, (c) biodiesel B20 and (d) diesel or biodiesel, both contaminated by distilled water. In this engine, its power utilizing biodiesel B5 versus diesel was lower about 5.2% and, in the investigated case of B20 versus diesel, it was lower around 11.5%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Natural Gas Vehicle has had a fast increase lately. However, in order to have a continuous success this Program needs to develop converting devices of Otto-cycle engines, gasoline or alcohol, to the use of NGV (Natural Gas Vehicle) that presents low cost, maintaining the same original development of the vehicle and low level of emissions, considering the PROCONVE rules. Due to the need to diversify the matrix in order to avoid energetic dependence and due to strict pollution control, it has increased in the Brazilian market the number of vehicles converted to the use of NGV. The recent regulation of the PROCONVE, determining that the converted engines with kits should be submitted to emission testing, comes to reinforce the necessity of the proposed development. Therefore, if we can obtain kits with the characteristics already described, we can reach a major trust in the market and obtain an increase acceptance of the vehicle conversion for NGV. The use of natural gas as vehicle fuel presents several advantages in relation to liquid fuels. It is a vehicle fuel with fewer indexes of emissions when compared to diesel; their combustion gases are less harmful, with a major level of safety than liquid fuels and the market price is quite competitive. The preoccupation that emerges, and the motivation of this project, is to know which are the main justifications for such technology, well accepted in other countries, with a low index or emission, with a high level of safety, where its maintenance becomes low, reminding that for this it is necessary that this technology has to be used properly, and once available in the market will not motivate interest in the urban transportation companies in Brazil, in research centers in general. Therefore this project exists to show the society in a general way the current vision of the main governmental factors, of the national research centers and of the private companies concerning the use of natural gas vehicles in urban transport vehicles, in order to give a major reliability to the population as well as to motivate national market competitiveness with a low cost and reliable product and to enrich the national technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was motivated by the importance of conducting a study of vehicle emissions in captive fleets with diesel engine, coupled with the predictive maintenance plan. This type of maintenance includes techniques designed to meet the growing market demand to reduce maintenance costs by increasing the reliability of diagnoses, which has increased interest in automated predictive maintenance on diesel engines, preventing problems that might evolve into routine turn into serious situations, solved only with complex and costly repairs, the Reliability Centered Maintenance, will be the methodology that will make our goal is reached, beyond maintaining the vehicles regulated as fuel consumption and emissions. To Therefore, technical improvements were estimated capable of penetrating the automotive market and give the inshore fleet emission rates of opacity of the vehicles, being directly related to the conditions of the lubricating oil thus contributing to reducing maintenance costs by contributing significantly to emissions of pollutants and an improvement in the air in large cities. This criterion was adopted and implemented, em 241 buses and produced a diagnosis of possible failures by the correlation between the characterization of used lubricating oils and the analysis of opacity, with the objective of the aid the detection and solution of failures for the maintenance of sub-systems according to design criteria, and for this to be a deductive methodology to determine potential causes of failures, has been automated to implement a predictive maintenance system for this purpose was used in our study a mobile unit equipped with a opacimeter and a kit for collection and analysis of lubricating oil and the construction of the network diagnostics, we used a computer program in Microsoft Office Access 2007 platform tool is indispensable for creating a database data, this method is being used and successfully implemented in seven (7) bus companies from the city of Natal (RN) Brazil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02  0,005 μm, were measured by its contact angle of 7,0  3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5  3,5o, 13,5  3,5o e 19,0  1,0o; for the distilled water, 78,0  6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0  4,0o, 8,5  4,5o e 19,5  2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biodiesel use has become important due to its renewable character and to reduce environmental impacts during the fuel burning. Theses benefit will be valid if the fuel shows good performance, chemistry stability and compatibility with engines. Biodiesel is a good fuel to diesel engines due to its lubricity. Then, the aimed of this study was to verify the physicalchemistry properties of biodiesel and their correlations with possible elastomers damage after biodiesel be used as fuel in an injection system. The methodology was divided in three steps: biodiesels synthesis by transesterification of three vegetable oil (soybean, palm and sunflower) and their physical-chemistry characterization (viscosity, oxidative stability, flash point, acidity, humidity and density); pressurized test of compatibility between elastomers (NBR and VITON) and biodiesel, and the last one, analyze of biodiesels lubricity by tribological test ball-plan( HFRR). Also, the effect of mixture of biodiesel and diesel in different concentrations was evaluated. The results showed that VITON showed better compatibility with all biodiesel blends in relation to NBR, however when VITON had contact with sunflower biodiesel and its blends the swelling degree suffer higher influences due to biodiesel humidity. For others biodiesels and theirs blends, this elastomer kept its mechanical properties constant. The better tribological performance was observed for blends with high biodiesel concentration, lower friction coefficient was obtained when palm biodiesel was used. The main mechanisms observed during the HFRR tests were abrasive and oxidative wear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the Protocol of Kyoto and of the ECHO 92 - Rio de Janeiro, the attentions of the world focus to the preservation of the environment and of the maintainable use of the natural resources. People were looking for preserving environment for the future generations. Ever since, solutions are looked for the supply of energy in its more acquaintances forms and the substitution of the use of fossil fuels for the such alternative forms as: Photovoltaics, solar heat systems for water, wind , bio-diesel, etc. and in this context the Company of Engineering of the State of Bahia - Cerb changed a diesel pumping system by an wind one, It´s the first community system of this nature in Bahia. Facing problems with the model, a Cerb involved the academic segment of the Federal Center of Technological Education of Bahia Cefetba looking for a solution. This work intends to demonstrate the possibilities of optimization of the pumping communit system that supply water to approximately 50 people in the place of Romão, municipal district of São Gabriel-Ba. Technical reports were published in AGRENERGD2004-Unicamp SP and Scientific Magazine ETC,Cefetba, 2005. A simulation of the increase of energy is presented for heights of 15 and 20m, considering the eletromecanical balance from the pumping energy to the wind turbine. From the accomplished bibliographical revision, we emphasized the mechanical aspects of the engineering once in UFRN, those studies concentrate on the Department of Mechanical Engineering while, in others eletroelectronic are more emphasized. Finally, documents that we judged important were enclosed for the perfect understanding of this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground reservoirs of fuel retailing system represent an environmental threat, because once in bad conservation, these tanks allow fuel leakage and infiltration. For soil contaminated with fuel, such as diesel oil, the present study introduces the microemulsion systems used by the method of washing. In tests carried out in column with a sample of sandy soil artificially contaminated and previously characterized as to its void level to porosity, to permeability which is an important parameter concerning the study of the method of washing. While microemulsions were characterized for their viscosity and wettability, a variation of active matter was also done departing from the original formulation. The hydraulic diffusivity of the microemulsion was studied so as the injection of such fluid in a soil with sandy characteristics. The results of the extractions revealed the excellent performance of these systems which get to remove around 95% of diesel fuel. This proves the efficiency of the microemulsion in the process of removal of diesel fuel from the soil with the advantage of being a system easily obtainable and less aggressive to the environment when compared to organic solvents.