10 resultados para Dark Matter, Sensitivity, XENON1T, Profile Likelihood

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trasnversal study, with the objective of evaluating the accuracy of clinical indicators of nursing diagnosis excessive fluid volume in patients undergoing hemodialysis. The study occurred in two stages, the first consisted of the evaluation of the diagnostic indicators in study; and the second, the diagnostic inference conducted by nurse diagnosticians. The first stage occurred from december 2012 to april 2013, in a University Hospital and a Hemodialysis Clinic in Northeastern of Brazil, with a sample of 100 chronic renal failure patients on hemodialysis. The data were selected through an interview form and a physical examination, organized into spreadsheets and analyzed as to the presence or absence of the indicators of diagnosis excessive fluid volume. In the second step, the spreadsheets were sent to three nurses diagnosticians, who judged the presence or absence of diagnosis in the clientele searched. This step was conducted from july to september 2013. For analysis of the data, we used descriptive and inferential statistics. In the descriptive analysis, we used measures of central tendency and dispersion. In inferential analysis, we used the tests Chi- square, Fisher and prevalence ratios. The accuracy of the clinical indicators pertaining to the diagnosis were measured as to the specificity, sensitivity, predictive values, likelihood ratios and Diagnostic Odds Ratio. Also developed a logistic regression. The results were organized in tables and discussed with literature. This study was approved by the Ethics Committee in Research of the Federal University of Rio Grande do Norte, with Presentation Certificate for Ethics Appreciation nº 08696212.7.0000.5537. The results revealed that the diagnosis studied was present in 82% of patients. The characteristics with prevalence above 50 % that stood out were: azotemia, decreased hematocrit, electrolyte imbalance, intake exceeds output, anxiety, edema, decreased hemoglobin, oliguria and blood pressure changes. Eight defining characteristics were presented statistically significant association with the nursing diagnosis investigated: pulmonary congestion, intake exceeds output, electrolytes imbalance, jugular vein distension, edema, weight gain over short period of time, agitation and adventitious breath sounds. Among these, the 10 characteristics which showed higher prevalence ratios were: edema and weight gain over short period of time. The features with the highest sensitivity were edema, electrolytes imbalance and intake exceeds output and the standing out with greater specificity were: anasarca, weight gain over short period of time, change in respiratory pattern, adventitious breath sounds, pulmonary congestion, agitation and jugular vein distension. The indicators jugular vein distension, electrolytes imbalance, intake exceeds output, increased central venous pressure and edema, together, were identified in the logistic regression model as the most significant predictors. It is concluded that the identification of accurate clinical indicators allow a good prediction of the nursing diagnosis of excessive fluid volume in patients undergoing hemodialysis in order to assist the nurse in the inference process, which will contribute to the success of patient care. In addition, nurses will consider for diagnostic inference not only his clinical experience, but also scientific evidence of the occurrence of excessive fluid volume, contributing to the control of volemia in these patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent observational advances of Astronomy and a more consistent theoretical framework turned Cosmology in one of the most exciting frontiers of contemporary science. In this thesis, homogeneous and inhomogeneous Universe models containing dark matter and different kinds of dark energy are confronted with recent observational data. Initially, we analyze constraints from the existence of old high redshift objects, Supernovas type Ia and the gas mass fraction of galaxy clusters for 2 distinct classes of homogeneous and isotropic models: decaying vacuum and X(z)CDM cosmologies. By considering the quasar APM 08279+5255 at z = 3.91 with age between 2-3 Gyr, we obtain 0,2 < OM < 0,4 while for the j3 parameter which quantifies the contribution of A( t) is restricted to the intervalO, 07 < j3 < 0,32 thereby implying that the minimal age of the Universe amounts to 13.4 Gyr. A lower limit to the quasar formation redshift (zJ > 5,11) was also obtained. Our analyzes including flat, closed and hyperbolic models show that there is no an age crisis for this kind of decaying A( t) scenario. Tests from SN e Ia and gas mass fraction data were realized for flat X(z)CDM models. For an equation of state, úJ(z) = úJo + úJIZ, the best fit is úJo = -1,25, úJl = 1,3 and OM = 0,26, whereas for models with úJ(z) = úJo+úJlz/(l+z), we obtainúJo = -1,4, úJl = 2,57 and OM = 0,26. In another line of development, we have discussed the influence of the observed inhomogeneities by considering the Zeldovich-Kantowski-DyerRoeder (ZKDR) angular diameter distance. By applying the statistical X2 method to a sample of angular diameter for compact radio sources, the best fit to the cosmological parameters for XCDM models are OM = O, 26,úJ = -1,03 and a = 0,9, where úJ and a are the equation of state and the smoothness parameters, respectively. Such results are compatible with a phantom energy component (úJ < -1). The possible bidimensional spaces associated to the plane (a , OM) were restricted by using data from SNe Ia and gas mass fraction of galaxy clusters. For Supernovas the parameters are restricted to the interval 0,32 < OM < 0,5(20") and 0,32 < a < 1,0(20"), while to the gas mass fraction we find 0,18 < OM < 0,32(20") with alI alIowed values of a. For a joint analysis involving Supernovas and gas mass fraction data we obtained 0,18 < OM < 0,38(20"). In general grounds, the present study suggests that the influence of the cosmological inhomogeneities in the matter distribution need to be considered with more detail in the analyses of the observational tests. Further, the analytical treatment based on the ZKDR distance may give non-negligible corrections to the so-calIed background tests of FRW type cosmologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the way in which large-scale structures, like galaxies, form remains one of the most challenging problems in cosmology today. The standard theory for the origin of these structures is that they grew by gravitational instability from small, perhaps quantum generated, °uctuations in the density of dark matter, baryons and photons over an uniform primordial Universe. After the recombination, the baryons began to fall into the pre-existing gravitational potential wells of the dark matter. In this dissertation a study is initially made of the primordial recombination era, the epoch of the formation of the neutral hydrogen atoms. Besides, we analyzed the evolution of the density contrast (of baryonic and dark matter), in clouds of dark matter with masses among 104M¯ ¡ 1010M¯. In particular, we take into account the several physical mechanisms that act in the baryonic component, during and after the recombination era. The analysis of the formation of these primordial objects was made in the context of three models of dark energy as background: Quintessence, ¤CDM(Cosmological Constant plus Cold Dark Matter) and Phantom. We show that the dark matter is the fundamental agent for the formation of the structures observed today. The dark energy has great importance at that epoch of its formation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A possible approach to the cosmological coincidence problem is to allow dark matter and dark energy to interact with each other also nongravitationally. Two general classes of interaction were considered in this thesis, characterized by a constant interaction parameter ( or

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dark matter is a fundamental ingredient of the modern Cosmology. It is necessary in order to explain the process of structures formation in the Universe, rotation curves of galaxies and the mass discrepancy in clusters of galaxies. However, although many efforts, in both aspects, theoretical and experimental, have been made, the nature of dark matter is still unknown and the only convincing evidence for its existence is gravitational. This rises doubts about its existence and, in turn, opens the possibility that the Einstein’s gravity needs to be modified at some scale. We study, in this work, the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides en alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations and find their solutions to a spherical system of identical and collisionless point particles. Then, we took into account the collisionless relativistic Boltzmann equation and using some approximations and assumptions for weak gravitational field, we derived the generalized virial theorem in the framework of EBI gravity. In order to compare the predictions of EBI gravity with astrophysical observations we estimated the order of magnitude of the geometric mass, showing that it is compatible with present observations. Finally, considering a power law for the density of galaxies in the cluster, we derived expressions for the radial velocity dispersion of the galaxies, which can be used for testing some features of the EBI gravity.