61 resultados para Dados Espaciais
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work focuses the geomorphological characterization and spatial data modeling in the shallow continental shelf within the Folha Touros limits (SB-25-CV-II), based on bathymetric data analysis and remote sensing products interpretation. The Rio Grande do Norte state is located in northeastern Brazil and the work area is located at the transition region between the eastern and northern portions of their coast. The bathymetric surveys were conduced between march and may 2009, using a 10 meters long vessel and 0.70 meters draught, equipped with global positioning system and echo sounder (dual beam, 200KHz , 14°). The fieldwork resulted in 44 bathymetric profiles espaced 1.5 km and 30 km average length. The bathymetric data amount were 111,200 points and were navigated 1395.7 km within na area about 1,850 km2. The bathymetric data were corrected for the tide level, vessel draught and were subsequently entered into a geographic information system for further processing. Analysis of remote sensing products was carried out using Landsat 7/ETM + band 1, from november 1999. The image was used for visualization and mapping submerged features. The results showed the presence of geomorphological features within the study area. Were observed, from the analysis of local bathymetry and satellite image, seven types of geomorphological features. The channels, with two longitudinals channels (e. g. San Roque and Cioba channels) and other perpendicular to the coast (e. g. Touros, Pititinga and Barretas). Coastal reef formations (Maracajaú, Rio do Fogo and Cioba). Longitudinal waves, described in the literature as longitudinal dunes. The occurrence of a transverse dune field. Another feature observed was the oceanic reefs, an rock alignment parallel to the coast. Were identified four riscas , from north to south: risca do Liso, Gameleira, Zumbi, Pititinga (the latter being described for the first time). Finally, an oceanic terrace was observed in the deepest area of study. Image interpretation corroborated with the in situ results, enabling visualization and description for all features in the region. The results were analysed in an integrating method (using the diferent methodologies applied in this work) and it was essential to describe all features in the area. This method allowed us to evaluate which methods generated better results to describe certain features. From these results was possible to prove the existence of submerged features in the eastern shallow continental shelf of Rio Grande do Norte. In this way, the conclusions was (1) this study contributed to the provision of new information about the area in question, particularly with regard to data collection in situ depths, (2) the method of data collection and interpretation proves to be effective because, through this, it was possible to visualize and interpret the features present in the study area and (3) the interpretation and discussion of results in an integrated method, using different methodologies, can provide better results
Resumo:
Since centuries ago, the Asians use seaweed as an important source of feeding and are their greatest world-wide consumers. The migration of these peoples for other countries, made the demand for seaweed to increase. This increasing demand prompted an industry with annual values of around US$ 6 billion. The algal biomass used for the industry is collected in natural reservoirs or cultivated. The market necessity for products of the seaweed base promotes an unsustainable exploration of the natural banks, compromising its associated biological balance. In this context, seaweed culture appears as a viable alternative to prevent the depletion of these natural supplies. Geographic Information Systems (GIS) provide space and produce information that can facilitate the evaluation of important physical and socio-economic characteristics for the planning of seaweed culture. This objective of this study is to identify potential coastal areas for seaweed culture in the state of Rio Grande do Norte, from the integration of social-environmental data in the SIG. In order to achieve this objective, a geo-referred database composed of geographical maps, nautical maps and orbital digital images was assembled; and a bank of attributes including physical and oceanographical variables (winds, chains, bathymetry, operational distance from the culture) and social and environmental factors (main income, experience with seaweed harvesting, demographic density, proximity of the sheltered coast and distance of the banks) was produced. In the modeling of the data, the integration of the space database with the bank of attributes for the attainment of the map of potentiality of seaweed culture was carried out. Of a total of 2,011 ha analyzed by the GIS for the culture of seaweed, around 34% or 682 ha were indicated as high potential, 55% or 1,101 ha as medium potential, and 11% or 228 ha as low potential. The good indices of potentiality obtained in the localities studied demonstrate that there are adequate conditions for the installation of seaweed culture in the state of Rio Grande do Norte
Resumo:
This work demonstrates the importance of using tools used in geographic information systems (GIS) and spatial data analysis (SDA) for the study of infectious diseases. Analysis methods were used to describe more fully the spatial distribution of a particular disease by incorporating the geographical element in the analysis. In Chapter 1, we report the historical evolution of these techniques in the field of human health and use Hansen s disease (leprosy) in Rio Grande do Norte as an example. In Chapter 2, we introduced a few basic theoretical concepts on the methodology and classified the types of spatial data commonly treated. Chapters 3 and 4 defined and demonstrated the use of the two most important techniques for analysis of health data, which are data point processes and data area. We modelled the case distribution of Hansen s disease in the city of Mossoró - RN. In the analysis, we used R scripts and made available routines and analitical procedures developed by the author. This approach can be easily used by researchers in several areas. As practical results, major risk areas in Mossoró leprosy were detected, and its association with the socioeconomic profile of the population at risk was found. Moreover, it is clearly shown that his approach could be of great help to be used continuously in data analysis and processing, allowing the development of new strategies to work might increase the use of such techniques in data analysis in health care
Resumo:
Since centuries ago, the Asians use seaweed as an important source of feeding and are their greatest world-wide consumers. The migration of these peoples for other countries, made the demand for seaweed to increase. This increasing demand prompted an industry with annual values of around US$ 6 billion. The algal biomass used for the industry is collected in natural reservoirs or cultivated. The market necessity for products of the seaweed base promotes an unsustainable exploration of the natural banks, compromising its associated biological balance. In this context, seaweed culture appears as a viable alternative to prevent the depletion of these natural supplies. Geographic Information Systems (GIS) provide space and produce information that can facilitate the evaluation of important physical and socio-economic characteristics for the planning of seaweed culture. This objective of this study is to identify potential coastal areas for seaweed culture in the state of Rio Grande do Norte, from the integration of social-environmental data in the SIG. In order to achieve this objective, a geo-referred database composed of geographical maps, nautical maps and orbital digital images was assembled; and a bank of attributes including physical and oceanographical variables (winds, chains, bathymetry, operational distance from the culture) and social and environmental factors (main income, experience with seaweed harvesting, demographic density, proximity of the sheltered coast and distance of the banks) was produced. In the modeling of the data, the integration of the space database with the bank of attributes for the attainment of the map of potentiality of seaweed culture was carried out. Of a total of 2,011 ha analyzed by the GIS for the culture of seaweed, around 34% or 682 ha were indicated as high potential, 55% or 1,101 ha as medium potential, and 11% or 228 ha as low potential. The good indices of potentiality obtained in the localities studied demonstrate that there are adequate conditions for the installation of seaweed culture in the state of Rio Grande do Norte
Resumo:
The study of complex systems has become a prestigious area of science, although relatively young . Its importance was demonstrated by the diversity of applications that several studies have already provided to various fields such as biology , economics and Climatology . In physics , the approach of complex systems is creating paradigms that influence markedly the new methods , bringing to Statistical Physics problems macroscopic level no longer restricted to classical studies such as those of thermodynamics . The present work aims to make a comparison and verification of statistical data on clusters of profiles Sonic ( DT ) , Gamma Ray ( GR ) , induction ( ILD ) , neutron ( NPHI ) and density ( RHOB ) to be physical measured quantities during exploratory drilling of fundamental importance to locate , identify and characterize oil reservoirs . Software were used : Statistica , Matlab R2006a , Origin 6.1 and Fortran for comparison and verification of the data profiles of oil wells ceded the field Namorado School by ANP ( National Petroleum Agency ) . It was possible to demonstrate the importance of the DFA method and that it proved quite satisfactory in that work, coming to the conclusion that the data H ( Hurst exponent ) produce spatial data with greater congestion . Therefore , we find that it is possible to find spatial pattern using the Hurst coefficient . The profiles of 56 wells have confirmed the existence of spatial patterns of Hurst exponents , ie parameter B. The profile does not directly assessed catalogs verification of geological lithology , but reveals a non-random spatial distribution
Resumo:
The use of Geographic Information Systems (GIS) has becoming very important in fields where detailed and precise study of earth surface features is required. Applications in environmental protection are such an example that requires the use of GIS tools for analysis and decision by managers and enrolled community of protected areas. In this specific field, a challenge that remains is to build a GIS that can be dynamically fed with data, allowing researchers and other agents to recover actual and up to date information. In some cases, data is acquired in several ways and come from different sources. To solve this problem, some tools were implemented that includes a model for spatial data treatment on the Web. The research issues involved start with the feeding and processing of environmental control data collected in-loco as biotic and geological variables and finishes with the presentation of all information on theWeb. For this dynamic processing, it was developed some tools that make MapServer more flexible and dynamic, allowing data uploading by the proper users. Furthermore, it was also developed a module that uses interpolation to aiming spatial data analysis. A complex application that has validated this research is to feed the system with data coming from coral reef regions located in northeast of Brazil. The system was implemented using the best interactivity concept provided by the AJAX model and resulted in a substantial contribution for efficiently accessing information, being an essential mechanism for controlling events in the environmental monitoring
Resumo:
In this work the landscape morphodynamics was used to check the strength and importance of the changes carried out by man on the environment over time, in Natal-RN municipality. The occupation of partially preserved natural areas was analyzed, but environmentally fragile, such as riparian forests, vegetation on the banks of waterways, which play regulatory role of the water flow, and the dunes, which guarantee the rapid recharge of aquifers. The impacts of urban sprawl in Natal Southern and West zones Were identified and characterized, through a detailed mapping in the period between 1969 and 2013 the main Permanent Preservation Areas - PPA (banks of rivers and lagoons, and dunes remaining) and their temporal changes. For this were used aerial photographs and satellite imagery, altimetry data, and pre-existing information, which allowed the creation of a spatial database, and evolution of maps of impervious areas, evolution of the use and occupation and Digital Terrain Model (DTM) from contour lines with contour interval of 1 meter. Based on this study presents a diagnosis of the environmental situation and the state of conservation of natural areas, over the last 44 years, compared to human pressures. In general, it was found that the urban settlement has advanced about 60% of studied natural areas. This advance was growing by the year 2006, when there was a slowdown in the process, except for the Environmental Protection Zone (EPZ) 03, where the river Pitimbú and your PPA, which experienced a more significant loss area. The urban occupation affected the natural drainage and contributed to the contamination of groundwater Natal, due to increased sealed area, the release of liquid and solid waste, as well as the removal of riparian vegetation. Changed irreversibly the natural landscape, and reduced the quality and quantity of water resources necessary for the population. Thus, it is necessary to stimulate the adoption of use and protection of PPA planning measures, to the preservation of the San Valley Region inserted into the EPZ 01, and integrate more remaining dunes, in good condition, this EPZ, due to the importance of those remaining on the environment and the maintenance of quality of life. It is suggested, also, protection of catchment areas, such as PPA ponds and Pitimbú River. Finally, it is expected that this study can assist the managers in making decisions in urban and environmental planning of the municipality
Resumo:
The study of complex systems has become a prestigious area of science, although relatively young . Its importance was demonstrated by the diversity of applications that several studies have already provided to various fields such as biology , economics and Climatology . In physics , the approach of complex systems is creating paradigms that influence markedly the new methods , bringing to Statistical Physics problems macroscopic level no longer restricted to classical studies such as those of thermodynamics . The present work aims to make a comparison and verification of statistical data on clusters of profiles Sonic ( DT ) , Gamma Ray ( GR ) , induction ( ILD ) , neutron ( NPHI ) and density ( RHOB ) to be physical measured quantities during exploratory drilling of fundamental importance to locate , identify and characterize oil reservoirs . Software were used : Statistica , Matlab R2006a , Origin 6.1 and Fortran for comparison and verification of the data profiles of oil wells ceded the field Namorado School by ANP ( National Petroleum Agency ) . It was possible to demonstrate the importance of the DFA method and that it proved quite satisfactory in that work, coming to the conclusion that the data H ( Hurst exponent ) produce spatial data with greater congestion . Therefore , we find that it is possible to find spatial pattern using the Hurst coefficient . The profiles of 56 wells have confirmed the existence of spatial patterns of Hurst exponents , ie parameter B. The profile does not directly assessed catalogs verification of geological lithology , but reveals a non-random spatial distribution
Resumo:
The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis
Resumo:
This study shows the results of a research developed in the coastal regions of the Maxaranguape and Touros municipalities, more specific in the mobile dune fields of the Rio Grande do Norte's eastern coast. Although the coastal zones, represent a small percentage of the earth's surface it concentrates a great part of the world's population. The Rio Grande do Norte's state coastal landscape mosaic composed by the dune fields suggest a dynamic scene of changes in the spatial and temporal arranges, with significant changes in the geometry of the sedimentary cover. Following this perspective this research has the objective to map the emerged coastal zone of the Rio Grande do Norte's eastern coast under the perspective of the time-space evolution of the mobile dune fields using geoprocessing techniques, which includes remote sensing, digital images processing and geographic information system (GIS). The results imply the issue of thematic maps: Geologic map; multitemporal evolution map of the mobile dune fields; quantification of the mobile dune fields differences map; temporal evolution of the mobile dune fields surrounds map. The El Niño episodes have directly affected the atmospheric circulation, what have enhanced the sedimentary input in the sand dune, what can justify the relative area growth between the years of 1993 and 2001. The dynamic of the landscape transition were higher than the stability of the spatial pattern of the dune and it's surrounds, as a result the Rio Grande do Norte eastern coast dune fields, specially the mobile dunes from Touros, Zumbi and Maracajau have shown a decrease on the sedimentary cover without vegetation area from 1970 to 2007. Therefore, the data acquired and the techniques used, can be, eventually applied to the mobile dune fields monitoring in order to preserve the dune ecosystems in the Rio Grande do Norte coast
Resumo:
This research aims to set whether is possible to build spatial patterns over oil fields using DFA (Detrended Fluctuation Analysis) of the following well logs: sonic, density, porosity, resistivity and gamma ray. It was employed in the analysis a set of 54 well logs from the oil field of Campos dos Namorados, RJ, Brazil. To check for spatial correlation, it was employed the Mantel test between the matrix of geographic distance and the matrix of the difference of DFA exponents of the well logs. The null hypothesis assumes the absence of spatial structures that means no correlation between the matrix of Euclidean distance and the matrix of DFA differences. Our analysis indicate that the sonic (p=0.18) and the density (p=0.26) were the profiles that show tendency to correlation, or weak correlation. A complementary analysis using contour plot also has suggested that the sonic and the density are the most suitable with geophysical quantities for the construction of spatial structures corroborating the results of Mantel test
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis