12 resultados para Continuous-time Markov Chain
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables
Resumo:
In this work, we present a risk theory application in the following scenario: In each period of time we have a change in the capital of the ensurance company and the outcome of a two-state Markov chain stabilishs if the company pays a benece it heat to one of its policyholders or it receives a Hightimes c > 0 paid by someone buying a new policy. At the end we will determine once again by the recursive equation for expectation the time ruin for this company
Resumo:
Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation
Resumo:
Social behavior of Guiana dolphins, Sotalia guianensis, at Pipa Beach, RN, Brazil: dynamics, sequence, breathing synchrony, and responses to dolphin watching. Social animals form groups that can range from temporary to permanent. Depending on the nature of the social relationships developed between individuals, groups present a particular social organization and the effect of these interactions shapes the activity patterns of these animals. This study investigates: (i) fission-fusion dynamics of Guiana dolphins, through the analysis of three dimensions of the social system (variation in spatial cohesion, variation in size and composition of groups), (ii) sequence, routine and behavioral stability, (iii) breathing intervals in synchronized groups and (iv) behavioral responses of the animals to dolphin watching. Systematic observations of Guiana dolphins were made from a platform located in cliffs about 25 m above sea level that surround Madeiro Bay, Pipa Beach. Sampling occurred from December 2007 to February 2009 between 0600 h and 1600 h, and the groups of Guiana dolphins were investigated according to their size (alone and group) and composition (adults, adults and juveniles, and adults and calves). According to the analysis of fission-fusion dynamics, Guiana dolphin groups frequently changed their composition, modifying their patterns of spatial grouping and cohesion every 20 minutes on average. More than 50% of the individuals maintained a distance of up to 2 m from other group members and new individuals were attracted to the group, especially during feeding, leaving it for foraging. Large groups were more unstable than small, while groups containing only adults were more stable than groups of adults and juveniles. According to the Z-score analysis to investigate the sequence and behavioral routine, lone individuals were more ! .7! ! involved in foraging and feeding, while resting was more common in groups. Foraging and feeding were more common in homogeneous groups (individuals of the same age class), while heterogeneous groups (different age classes) were often involved in socialization, displaying a broader behavioral repertoire. Foraging and resting behavior presented higher stability (continuous duration in minutes) than the other behaviors. The analysis of breathing intervals in synchronized groups showed significant differences depending on type of behavior, composition and area preference. During resting, breathing intervals were of longer duration, and groups with calves showed shorter breathing intervals than groups without calves. Lone individuals also preferred areas called corral , often used for the entrapment of fishes. The Markov chain analysis revealed behavioral changes in the presence of boats, according to the type of group composition. Groups composed of adults presented decreased resting and increased in traveling during the presence of boats. Groups of adults and juveniles showed a massive reduction of socialization, while the behavior transition probability traveling-traveling was higher in groups of adults and calves. In the presence of the boats, stability of resting was reduced by one third of its original duration and traveling more than doubled. The behavioral patterns analyzed are discussed in light of socio-ecological models concerning costs and benefits of proximity between individuals and behavioral optimization. Furthermore, significant changes in behavioral patterns indicate that Guiana dolphins, at Pipa Beach, have suffered the effects of tourism as a result of violation of rules of conduct established for the study area
Resumo:
In this work we study a new risk model for a firm which is sensitive to its credit quality, proposed by Yang(2003): Are obtained recursive equations for finite time ruin probability and distribution of ruin time and Volterra type integral equation systems for ultimate ruin probability, severity of ruin and distribution of surplus before and after ruin
Resumo:
In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process
Resumo:
In this work, we studied the strong consistency for a class of estimates for a transition density of a Markov chain with general state space E ⊂ Rd. The strong ergodicity of the estimates for the density transition is obtained from the strong consistency of the kernel estimates for both the marginal density p(:) of the chain and the joint density q(., .). In this work the Markov chain is supposed to be homogeneous, uniformly ergodic and possessing a stationary density p(.,.)
Resumo:
In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes
Resumo:
This paper proposes a procedure to control on-line processes for attributes, using an Shewhart control chart with two control limits (warning limit and control limit) and will be based on a sequence of inspection (h). The inspection procedure is based on Taguchi et al. (1989), in which to inspect the item, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required; and, if the last inspection h, from all items inspected present a number of non-conformities between the control limit and warning limit. The items inspected will suffer destructive inspection, being discarded after inspection. Properties of an ergodic Markov chain are used to get the expression of average cost per item and the aim was the determination of four optimized parameters: the sampling interval of the inspections (m); the constant W to draw the warning limit (W); the constant C to draw the control limit (C), where W £ C, and the length of sequence of inspections (h). Numerical examples illustrate the proposed procedure
Resumo:
Universidade Federal do Rio Grande do Norte
Resumo:
The on-line processes control for attributes consists of inspecting a single item at every m produced ones. If the examined item is conforming, the production continues; otherwise, the process stops for adjustment. However, in many practical situations, the interest consist of monitoring the number of non-conformities among the examined items. In this case, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required. The contribution of this paper is to propose a control system for the number of nonconforming of the inspected item. Employing properties of an ergodic Markov chain, an expression for the expected cost per item of the control system was obtained and it will be minimized by two parameters: the sampling interval and the upper limit control of the non-conformities of the examined item. Numerical examples illustrate the proposed procedure
Resumo:
In production lines, the entire process is bound to unexpected happenings which may cost losing the production quality. Thus, it means losses to the manufacturer. Identify such causes and remove them is the task of the processing management. The on-line control system consists of periodic inspection of every month produced item. Once any of those items is quali ed as not t, it is admitted that a change in the fraction of the items occurred, and then the process is stopped for adjustments. This work is an extension of Quinino & Ho (2010) and has as objective main to make the monitoramento in a process through the control on-line of quality for the number of non-conformities about the inspected item. The strategy of decision to verify if the process is under control, is directly associated to the limits of the graphic control of non-conformities of the process. A policy of preventive adjustments is incorporated in order to enlarge the conforming fraction of the process. With the help of the R software, a sensibility analysis of the proposed model is done showing in which situations it is most interesting to execute the preventive adjustment