2 resultados para Chitosan derivatives
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry