5 resultados para Chaotic behavior in systems

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scent-marking behavior is associated with different behavioral contexts in callitrichids, including signalizing a territory, location of feeding resources, and social rank. In marmosets and tamarins it is also associated with intersexual communication. Though it appears very important for the daily routine of the individuals, very few researchers have investigated distribution through the 24-h cycle. In a preliminary report, we described a preferential incidence of this behavior 2 h before nocturnal rest in families of common marmosets. We expand the data using 8 family groups (28 subjects), 8 fathers, 6 mothers, 8 nonreproductive adults (4 sons and 4 daughters), and 6 juvenile (3 sons and 3 daughters) offspring that we kept in outdoor cages under natural environmental conditions. We recorded the frequency of anogenital scent marking for each group during the light phase, twice a wk, for 4 consecutive wks, from March 1998 to September 1999. Cosinor test detected 24- and 8-h variations in 89.3% and 85.7% of the subjects, respectively, regardless of sex or reproductive status. The 8-h component is a consequence of the 2 peaks for the behavior, at the beginning and end of the light phase. Daily distribution of scent marking is similar to that others described previously for motor activity in marmosets. The coincident rhythmical patterns for both behaviors seem to be associated with feeding behavior, as described for callitrichids in free-ranging conditions, involving an increase in foraging activities early in the morning and shortly before nocturnal rest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scent-marking behavior is associated with different behavioral contexts in callitrichids, including signalizing a territory, location of feeding resources, and social rank. In marmosets and tamarins it is also associated with intersexual communication. Though it appears very important for the daily routine of the individuals, very few researchers have investigated distribution through the 24-h cycle. In a preliminary report, we described a preferential incidence of this behavior 2 h before nocturnal rest in families of common marmosets. We expand the data using 8 family groups (28 subjects), 8 fathers, 6 mothers, 8 nonreproductive adults (4 sons and 4 daughters), and 6 juvenile (3 sons and 3 daughters) offspring that we kept in outdoor cages under natural environmental conditions. We recorded the frequency of anogenital scent marking for each group during the light phase, twice a wk, for 4 consecutive wks, from March 1998 to September 1999. Cosinor test detected 24- and 8-h variations in 89.3% and 85.7% of the subjects, respectively, regardless of sex or reproductive status. The 8-h component is a consequence of the 2 peaks for the behavior, at the beginning and end of the light phase. Daily distribution of scent marking is similar to that others described previously for motor activity in marmosets. The coincident rhythmical patterns for both behaviors seem to be associated with feeding behavior, as described for callitrichids in free-ranging conditions, involving an increase in foraging activities early in the morning and shortly before nocturnal rest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.