3 resultados para Cdse Nanocrystals

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used ab initio calculations to investigate the electronic structure of SiGe based nanocrystals (NC s). This work is divided in three parts. In the first one, we focus the excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals. We also estimate the changes induced by the effect of strain the electronic structure. We show that Ge/Si (Si/Ge) NC s exhibits type II confinement in the conduction (valence) band. The estimated potential barriers for electrons and holes are 0.16 eV (0.34 eV) and 0.64 eV (0.62 eV) for Si/Ge (Ge/Si) NC s. In contradiction to the expected long recombination lifetimes in type II systems, we found that the recombination lifetime of Ge/Si NC s (τR = 13.39μs) is more than one order of magnitude faster than in Si/Ge NC s (τR = 191.84μs). In the second part, we investigate alloyed Si1−xGex NC s in which Ge atoms are randomly positioned. We show that the optical gaps and electron-hole binding energies decrease linearly with x, while the exciton exchange energy increases with x due to the increase of the spatial extent of the electron and hole wave functions. This also increases the electron-hole wave functions overlap, leading to recombination lifetimes that are very sensitive to the Ge content. Finally, we investigate the radiative transitions in Pand B-doped Si nanocrystals. Our NC sizes range between 1.4 and 1.8 nm of diameters. Using a three-levels model, we show that the radiative lifetimes and oscillator strengths of the transitions between the conduction and the impurity bands, as well as the transitions between the impurity and the valence bands are strongly affected by the impurity position. On the other hand, the direct conduction-to-valence band decay is practically unchanged due to the presence of the impurity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.