7 resultados para Categories (Mathematics)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
mongst the trends in Mathematics Education, which have as their object a more significant and criticallearning, is the Ethnomathematics. This field of knowledge, still very recent amongst us, besides analyzing an externalist history of the sciences in a search for a relationship between the development of the scientific disciplines and the socio-cultural context, goes beyond this externalism, for it also approaches the intimate relationships betwe_n cognition and culture. In fact, the Ethnomathematics proposes an alternative epistemological approach associated with a wider historiography. It struggles to understand the reality and come to the pedagogical action by means of a cognitive approach with strong cultural basis. But the difficulty of inserting the Ethnomathematics into the educational context is met by resistance from some mathematics educators who seem indifferent to the influence of the culture on the understanding of the mathematics ideas. It was with such concerns in mind that I started this paper that had as object to develop a curricular reorientation pedagogical proposal in mathematics education, at the levei of the 5th grade of the Ensino Fundamental (Elementary School), built from the mathematical knowledge of a vegetable farmers community, 30 km away from the center of Natal/RN, but in accordance with the teaching dimensions of mathematics of the 1 st and 2nd cycles proposed by the Parâmetros Curriculares Nacionais - PCN: Numbers and Operations, Space and Form, Units and Measures, and Information Treatment. To achieve that, I developed pedagogical activities from the mathematical concepts of the vegetable farmers of that community, explained in my dissertation research in the period 2000 through 2002. The pedagogical process was developed from August through Oecember 2007 with 24 students of the 5th Grade of the Ensino Fundamental (Elementary School) of the school of that community. The qualitative analysis of the data was conducted taking into account three categories of students: one made up of students that helped their parents in the work with vegetables. Another one by students whose parents and relatives worked with vegetables, though they did not participate directly of this working process and one third category of students that never worked with vegetables, not to mention their parents, but lived adjacent to that community. From the analyses and results of the data gathered by these three distinct categories of students, I concluded that those students that assisted their parents with the daily work with vegetables solved the problem-situations with understanding, and, sometimes, with enriching contributions to the proposed problems. The other categories of students, in spite of the various field researches to the gardens of that community, before and during the pedagogical activities, did not show the same results as those students/vegetable farmers, but showed interest and motivation in ali activities of the pedagogical process in that period
Resumo:
The aim of the present study is to investigate the way through which the relations between Mathematics and Religion emerge in the work of Blaise Pascal. This research is justified by the need to deepen these relations, so far little explored if compared to intersection points between Mathematics and other fields of knowledge. The choice for Pascal is given by the fact that he was one of the mathematicians who elaborated best one reflection in the religious field thus provoking contradictory reactions. As a methodology, it is a bibliographical and documental research with analytical-comparative reading of referential texts, among them the Oeuvres complètes de Pascal (1954), Le fonds pascalien à Clermont-Ferrand (2001), Mathematics in a postmodern age: a cristian perspective by Howell & Bradley (2001), Mathematics and the divine: a historical study by Koetsier & Bergmans (2005), the Anais dos Seminários Nacionais de História da Matemática and the Revista Brasileira de História da Matemática. The research involving Pascal's life as a mathematician and his religious experience was made. A wider background in which the subject matter emerges was also researched. Seven categories connected to the relation between mathematics and religion were identified from the reading of texts written by mathematicians and historians of mathematics. As a conclusion, the presence of four of these seven categories was verified in Pascal's work
Resumo:
The research aimed at investigating the dimensions and the universe of social representations of environmental education, as well as identifying the senses and meanings Environmental Education. This study admitted as presumption the education and environment dimensions. In this investigation was adopted as reference the dimension or representation scope of Moscovici. One hundred and twenty (120) students from Public Schools of Basic Education participated of this study and moreover three hundred and twenty-three (323) from Higher Education in the area of the UPE-FACETEG. The following questions were admitted: 1) What are the dimensions/categories that exist in the semantic scope of social representations of the environmental education? 2) What are the senses and meanings of environmental education? 3) The student s representations of Basic Education are similar or different from the Higher Education? The software EVOC helped in the organization of semantic scope for construction of the categories, with support of the contents analysis. The justifications are sorted on lexical classes using the software ALCESTE, through of the speech analyses. The free association of words answered the question dimension/categories and its semantic scope, being: a) Nature/Environment; b) values; c) Attitudes; d) Actions; e) Implications; f) Mediation. Six lexical classes were found with its meanings enumerated in this way: 1.Awareness, as a factor of belief for the preservation of nature and society. The students are clamoring for environmental education in the school, emphasizing the importance of awareness in the development of the respect to the environment linking the education and family; 2. The consciousness-knowledge relationship for the environment-nature preservation. 3. The environment and human interventions, in search of indicators of solutions. 4. Nature /background/ environment and its constituting elements, a thinking of values and an acting for mediation. 5. The human-nature interaction in social representations of environmental education and the symbolic-life size. 6. Nature / environment /, values, attitudes, actions, implications, and mediation in nature-man relationships. The groups more representatives according to these lexical classes were, the Basic Education in the class-4, represented exclusively by the Primary and Secondary Education and the class-6 represented by both two the Basic Education (47,37%) and the Higher Education (52,63%) - History, Pedagogy, Psychology, Mathematics, Language and Literature. The classes 4 and 6 are related to the class-3 which in turn is formed by students of Higher Education (Mathematics, Biology, Pedagogy, Psychology, Language and Literature) and Basic Education (Primary and Secondary Education). The Higher Education is most represented by the lexical classes (1, 2 and 5). The class 2 corresponded to 80% of the researched groups. In the class-1 the biggest representation was concerning to the Psychology, Geography, Biology and Language and Literature courses, whereas the class-5 was best represented by Psychology, Biology, Pedagogy, Language and Literature, Geography and History. From the results, one may conclude that the imagery is nature/environment; that life is the symbolic dimension that permeates the whole imaginary, and that preservation, awareness and respect are inserted in the speech that circulate to protect life
Resumo:
This research argues about the mathematical knowledge built in the tradition of the cassava flour production, seeking to analyse these mathematical knowledge in the perspective of the categories of time and measure, built and practiced in the flour production, located in Serra do Navio and Calçoene, in Amapá - Brazil. The following work discuss the identification and the description of the mathematics during the production activities of the flour, where is presented elements related to generation and transmission of the traditional knowledge, which is the basis for maintenance of the tradition of the flour, characterizing the research as an Ethnomathematic study. The methodological procedures highlight ethnographical techniques and elements that characterize the participating observation. The results obtained showed us that the flour workers articulate some length, area and volume measure due to own and traditionally acquired systems, which is apprehended and countersigned by other kind of culturally established system; thus they relativism the measures systems and the official calendars. And it lifts as one of the main proposal that the academic mathematics and the tradition establish knowledge make conjunction of the both knowledge, that is important for a possible reflection and application in the construction of a pedagogical practice in mathematical education, trying to establish points of socio-economic and cultural mark
Resumo:
This thesis represents a didactic research linked to the Post-graduation Programme in Education of the Universidade Federal do Rio Grande do Norte which aimed to approach the construction of the geometrical concepts of Volume of the Rectangular Parallelepiped, Area and Perimeter of the Rectangle adding a study of the Area of the Circle. The research was developed along with students from the 6th level of the Elementary School, in a public school in Natal/RN. The pedagogical intervention was made up of three moments: application of a diagnostic evaluation, instrument that enabled the creation of the teaching module by showing the level of the geometry knowledge of the students; introduction of a Teaching Module by Activities aiming to propose a reflexive didactic routing directed to the conceptual construction because we believed that such an approach would favor the consolidation of the learning process by becoming significant to the apprentice, and the accomplishment of a Final Evaluation through which we established a comparison of the results obtained before and after the teaching intervention. The data gathered were analyzed qualitatively by means of a study of understanding categories of mathematical concepts, in addition to using descriptive statistics under the quantitative aspect. Based on the theory of Richard Skemp, about categorization of mathematical knowledge, in the levels of Relational and Instrumental Understanding were achieved in contextual situations and varied proportions, thus enabling a contribution in the learning of the geometrical concepts studied along with the students who took part in the research. We believe that this work may contribute with reflections about the learning processes, a concern which remained during all the stages of the research, and also that the technical competence along with the knowledge about the constructivist theory will condition the implementation of a new dynamics to the teaching and learning processes. We hope that the present research work may add some contribution to the teaching practice in the context of the teaching of Mathematics for the intermediate levels of the Elementary School
Resumo:
The thesis presents a systematic description about the meaning, as Skemp, relational understanding and understanding instrumental, in the context of mathematics learning, being that we had as a guide his understanding of the schema. Especially, we analyze some academic productions, in the area of Mathematics Education, who used the categories of understanding relational and instrumental understanding how evaluative instrument and we see that in most cases the analysis is punctual. Being so, whereas the inherent understanding relational schema has a network of connected ideas and non-insulated, we investigated if the global analysis, where it is the understanding of the diversity of contributory concepts for formation of the concept to be learned, is more appropriate than the punctual, where does the understanding of concepts so isolated. For this, we apply a teaching module, having as main content the Quaternos Pythagoreans using History of Mathematics and the work of Bahier (1916). With the data we obtained the teaching module to use the global analysis and the punctual analysis, using research methodology the Case Study, and consequently we conduct our inferences about the levels of understanding of the subject which has made it possible for us to investigate the ownership of global analysis at the expense of punctual analysis. On the opportunity, we prove the thesis that we espouse in the course of the study and, in addition, we highlight as a contribution of our research evidence of need for a teaching of mathematics that entices the relational understanding and that evaluation should be global, being necessary to consider the notion of schema and therefore know the schematic diagram of the concept that will be evaluated
Resumo:
This work presents a contribution for the studies reffering to the use of the History of Mathematics focusing on the improvement of the Teaching and Learning Process. It considers that the History of Matematics, as a way of giving meaning to the discipline and improve the quality of the Teaching and Learning Process. This research focuses on the questions of the students, classified in three categories of whys: the chronological, the logical and the pedagogical ones. Therefore, it is investigated the teaching of the Complex Numbers, from the questions of the students of the Centro Federal de Educação Tecnológica do Rio Grande do Norte (Educational Institution of Professional and Technology Education from Rio Grande do Norte). The work has the following goals: To classify and to analyse the questions of the students about the Complex Numbers in the classes of second grade of the High School, and to collate with the pointed categories used by Jones; To disccus what are the possible guidings that teachers of Mathematics can give to these questions; To present the resources needed to give support to the teacher in all things involving the History of Mathematics. Finally, to present a bibliographic research, trying to reveal supporting material to the teacher, with contents that articulate the Teaching of Mathematics with the History of Mathematics. It was found that the questionings of the pupils reffers more to the pedagogical whys, and the didatic books little contemplate other aspects of the history and little say about the sprouting and the evolution of methods of calculations used by us as well