9 resultados para Carbonate reservoirs

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As rochas carbonáticas ocupam, numa visão global, um expressivo volume da crosta terrestre. De maneira geral, pode-se dizer que essas rochas estão presentes nas diversas unidades litoestatigráficas da Terra. Os reservatórios carbonáticos são reservas naturalmente fraturadas que exigem uma abordagem diferenciada na modelagem em programas de simulação numérica. Os modelos de dupla porosidade são descritos por funções de tranferências que modelam o fluxo de óleo entre matriz e fraturas. Em um reservatório carbonático naturalmente fraturado o sistema de fraturas é determinante no escoamento de fluidos dentro da reserva. Os maiores reservatórios carbonáticos do mundo estão situados no Oriente Médio e na América do Norte. As maiores reservas de óleo brasileiras encontradas neste tipo de reservatório estão localizadas nos campos do Pré-Sal. No Pré-Sal, um volume significativo de dióxido de carbono é produzido juntamente com o óleo. A disponibilidade de um volume consideravél de dióxido de carbono derivado da produção de óleo no Pré-Sal favorece a utilização dos processos de EOR (Enhanced Oil Recovery) por injeção de gás. O processo de injeção de dióxido de carbono vem sendo utilizado em uma grande quantidade de projetos pelo mundo. A afinidade existente entre o óleo e o dióxido de carbono causa uma frente miscível entre as duas fases causando inchamento e vaporização do óleo dentro do reservatório. Para o estudo, foi utilizado um modelo base de reservatório de dupla-porosidade, desenvolvido pela CMG para o 6° Projeto de Soluções Comparativas da SPE, que modela sistemas de fraturas e de matriz e a tranferência de massa fluida entre elas, características de reservatórios naturalmente fraturados. Foi feita uma análise da injeção de diferentes vazões de dióxido de carbono no modelo base e em modelos semelhantes, com aumento e redução de 5 e 0.5 pontos nas propriedades de porosidade e permeabilidade da matriz, respectivamente, tendo a produção de óleo como resultado. A injeção de 25 milhões de pés cúbicos por dia de CO2 foi a vazão que obteve a melhor fator de recuperação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large investment in exploration activities offshore Brazil has generated new findings, generally in carbonate reservoirs, with different wettability conditions usually considered in the sandstone, strongly water-wet. In general, the carbonates reservoirs tend to be oil-wet, it difficult to mobilize of oil these reservoirs. These oils can be mobilized by different methods, or it may reverse the wettability of the surface of the reservoir and facilitate the flow of oil, improving production rates. Thus, the objective of this work was to study the influence of inversion on the wettability of the rock in the production and recovery of petroleum from carbonate reservoirs, using microemulsions. Three systems were chosen with different classes of surfactants: a cationic (C16TAB), an anionic (SDS) and nonionic (Unitol L90). Studies of the influence of salinity on the formation of the microemulsion as well as the characterization of fluids using density and viscosity measurements were also performed. To verify the potential of microemulsion systems in changing the wettability state of the chalk oil-wet to water-wet, contact angle measurements were performed using chalk of neutral-wet as surface material. Overall, with respect to the ionic character of the surfactants tested, the cationic surfactant (C16TAB) had a greater potential for reversal in wettability able to transform the rock wettability neutral to strongly water-wet, when compared with the anionic surfactant (SDS) and nonionic (Unitol L90), which showed similar behavior, improving the wettability of the rock to water. The microemulsions of all surfactants studied were effective in oil recovery, resulting in 76.92% for the system with C16TAB, 67.42% for the SDS and 66.30% for Unitol L90 of residual oil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As rochas carbonáticas ocupam, numa visão global, um expressivo volume da crosta terrestre. De maneira geral, pode-se dizer que essas rochas estão presentes nas diversas unidades litoestatigráficas da Terra. Os reservatórios carbonáticos são reservas naturalmente fraturadas que exigem uma abordagem diferenciada na modelagem em programas de simulação numérica. Os modelos de dupla porosidade são descritos por funções de tranferências que modelam o fluxo de óleo entre matriz e fraturas. Em um reservatório carbonático naturalmente fraturado o sistema de fraturas é determinante no escoamento de fluidos dentro da reserva. Os maiores reservatórios carbonáticos do mundo estão situados no Oriente Médio e na América do Norte. As maiores reservas de óleo brasileiras encontradas neste tipo de reservatório estão localizadas nos campos do Pré-Sal. No Pré-Sal, um volume significativo de dióxido de carbono é produzido juntamente com o óleo. A disponibilidade de um volume consideravél de dióxido de carbono derivado da produção de óleo no Pré-Sal favorece a utilização dos processos de EOR (Enhanced Oil Recovery) por injeção de gás. O processo de injeção de dióxido de carbono vem sendo utilizado em uma grande quantidade de projetos pelo mundo. A afinidade existente entre o óleo e o dióxido de carbono causa uma frente miscível entre as duas fases causando inchamento e vaporização do óleo dentro do reservatório. Para o estudo, foi utilizado um modelo base de reservatório de dupla-porosidade, desenvolvido pela CMG para o 6° Projeto de Soluções Comparativas da SPE, que modela sistemas de fraturas e de matriz e a tranferência de massa fluida entre elas, características de reservatórios naturalmente fraturados. Foi feita uma análise da injeção de diferentes vazões de dióxido de carbono no modelo base e em modelos semelhantes, com aumento e redução de 5 e 0.5 pontos nas propriedades de porosidade e permeabilidade da matriz, respectivamente, tendo a produção de óleo como resultado. A injeção de 25 milhões de pés cúbicos por dia de CO2 foi a vazão que obteve a melhor fator de recuperação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rio do Peixe Basin represents a main basin of northeastern Brazil and pioneering work positioned the rocks of this basin in the Early Cretaceous. However, a recent study, based on integrated pollen analysis from three wells, found an unprecedented siliciclastic sedimentary section, in the region, of early Devonian age. Therefore, the present study aims a detailed petrographic and petrological analysis of this devonian section, in the Rio do Peixe Basin and proposes a diagenetic evolution, to understand the characteristics of the porous system, identify the main reservoir petrofacies with the main factors impacting on the quality of these rocks as reservoirs and a quick study on the provenance of this section. The petrographic study was based on samples obtained from subsurface and surface. The diagenetic evolution of petrofacies and its identification were based only on subsurface samples and the study of provenance was based on surface samples. The thin sections were prepared from sandstones, pelites and sandstones intercalated with pelites. The original detrital composition for this section is arcosean and the main diagenetic processes that affected these rocks occur in various depths and different conditions, which resulted in extensive diagenetic variety. The following processes were identified: early fracture and healing of grains; albitization of K-feldspar and plagioclase; siderite; precipitation of silica and feldspar; mechanical infiltration of clay and its transformation to illite/esmectite and illite; autigenesis of analcime; dissolution; autigenesis of chlorite; dolomite/ferrous dolomite/anquerite; apatite; calcite; pyrite; titanium minerals and iron oxide-hidroxide. The occurrence of a recently discovered volcanism, in the Rio do Peixe Basin, may have influenced the diagenetic evolution of this section. Three diagenetic stages affected the Devonian section: eo, meso and telodiagenesis. This section is compositionally quite feldspathic, indicating provenance from continental blocks, between transitional continental and uplift of the basement. From this study, we observed a wide heterogeneity in the role of the studied sandstones as reservoirs. Seven petrofacies were identified, taking into account the main diagenetic constituent responsible for the reduction of porosity. It is possible that the loss of original porosity was influenced by intense diagenesis in these rocks, where the main constituent for the loss of porosity are clays minerals, oxides and carbonate cement (calcite and dolomite)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All around the world, naturally occurring hydrocarbon deposits, consisting of oil and gas contained within rocks called reservoir rocks , generally sandstone or carbonate exists. These deposits are in varying conditions of pressure and depth from a few hundred to several thousand meters. In general, shallow reservoirs have greater tendency to fracture, since they have low fracture gradient, ie fractures are formed even with relatively low hydrostatic columns of fluid. These low fracture gradient areas are particularly common in onshore areas, like the Rio Grande do Norte basin. During a well drilling, one of the most favorable phases for the occurrence of fractures is during cementing, since the cement slurry used can have greater densities than the maximum allowed by the rock structure. Furthermore, in areas which are already naturally fractured, the use of regular cement slurries causes fluid loss into the formation, which may give rise to failures cementations and formation damages. Commercially, there are alternatives to the development of lightweight cement slurries, but these fail either because of their enormous cost, or because the cement properties were not good enough for most general applications, being restricted to each transaction for which the cement paste was made, or both reasons. In this work a statistical design was made to determine the influence of three variables, defined as the calcium chloride concentration, vermiculite concentration and nanosilica concentration in the various properties of the cement. The use of vermiculite, a low density ore present in large amounts in northeastern Brazil, as extensor for cementing slurries, enabled the production of stable cements, with high water/cement ratio, excellent rheological properties and low densities, which were set at 12.5 lb / gal, despite the fact that lower densities could be achieved. It is also seen that the calcium chloride is very useful as gelling and thickening agent, and their use in combination with nanosilica has a great effect on gel strength of the cement. Hydrothermal Stability studies showed that the pastes were stable in these conditions, and mechanical resistance tests showed values of the order of up to 10 MPa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the methodological procedures involved in digital imaging of collapsed paleocaves in tufa using GPR are presented. These carbonate deposits occur in the Quixeré region, Ceará State (NE Brazil), on the western border of the Potiguar Basin. Collapsed paleocaves are exposed along a state road, which were selected to this study. We chose a portion of the called Quixeré outcrop for making a photomosaic and caring out a GPR test section to compare and parameterize the karst geometries on the geophysical line. The results were satisfactory and led to the adoption of criteria for the interpretation of others GPR sections acquired in the region of the Quixeré outcrop. Two grids of GPR lines were acquired; the first one was wider and more spaced and guided the location of the second grid, denser and located in the southern part of the outcrop. The radargrams of the second grid reveal satisfactorily the collapsed paleocaves geometries. For each grid has been developed a digital solid model of the Quixeré outcrop. The first model allows the recognition of the general distribution and location of collapsed paleocaves in tufa deposits, while the second more detailed digital model provides not only the 3D individualization of the major paleocaves, but also the estimation of their respective volumes. The digital solid models are presented here as a new frontier in the study of analog outcrops to reservoirs (for groundwater and hydrocarbon), in which the volumetric parameterization and characterization of geological bodies become essential for composing the databases, which together with petrophysical properties information, are used in more realistic computer simulations for sedimentary reservoirs.