3 resultados para Carbonate reservoirs

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is divided into two independent papers.

PAPER 1.

Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail.

The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

PAPER 2.

Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron para- magnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures.

The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor at the ground zero borehole and decreases in depth towards the crater rim. A layer of highly shocked material is also found on the surface in the vicinity of the reference bolehole, located outside the crater. This material could represent a fallout layer. The ejecta samples have experienced a range of shock pressures.

It was also demonstrated that the EPR technique is feasible for the study of terrestrial impact craters formed in carbonate bedrock. The results for the Meteor Crater analysis suggest a slight degree of shock damage present in the β member of the Kaibab Formation exposed in the crater walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotope dilution thorium and uranium analyses of the Harleton chondrite show a larger scatter than previously observed in equilibrated ordinary chondrites (EOC). The linear correlation of Th/U with 1/U in Harleton (and all EOC data) is produced by variation in the chlorapatite to merrillite mixing ratio. Apatite variations control the U concentrations. Phosphorus variations are compensated by inverse variations in U to preserve the Th/U vs. 1/U correlation. Because the Th/U variations reflect phosphate ampling, a weighted Th/U average should converge to an improved solar system Th/U. We obtain Th/U=3.53 (1-mean=0.10), significantly lower and more precise than previous estimates.

To test whether apatite also produces Th/U variation in CI and CM chondrites, we performed P analyses on the solutions from leaching experiments of Orgueil and Murchison meteorites.

A linear Th/U vs. 1/U correlation in CI can be explained by redistribution of hexavalent U by aqueous fluids into carbonates and sulfates.

Unlike CI and EOC, whole rock Th/U variations in CMs are mostly due to Th variations. A Th/U vs. 1/U linear correlation suggested by previous data for CMs is not real. We distinguish 4 components responsible for the whole rock Th/U variations: (1) P and actinide-depleted matrix containing small amounts of U-rich carbonate/sulfate phases (similar to CIs); (2) CAIs and (3) chondrules are major reservoirs for actinides, (4) an easily leachable phase of high Th/U. likely carbonate produced by CAI alteration. Phosphates play a minor role as actinide and P carrier phases in CM chondrites.

Using our Th/U and minimum galactic ages from halo globular clusters, we calculate relative supernovae production rates for 232Th/238U and 235U/238U for different models of r-process nucleosynthesis. For uniform galactic production, the beginning of the r-process nucleosynthesis must be less than 13 Gyr. Exponentially decreasing production is also consistent with a 13 Gyr age, but very slow decay times are required (less than 35 Gyr), approaching the uniform production. The 15 Gyr Galaxy requires either a fast initial production growth (infall time constant less than 0.5 Gyr) followed by very low decrease (decay time constant greater than 100 Gyr), or the fastest possible decrease (≈8 Gyr) preceded by slow in fall (≈7.5 Gyr).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the use of multiply-substituted stable isotopologues of carbonate minerals and methane gas to better understand how these environmentally significant minerals and gases form and are modified throughout their geological histories. Stable isotopes have a long tradition in earth science as a tool for providing quantitative constraints on how molecules, in or on the earth, formed in both the present and past. Nearly all studies, until recently, have only measured the bulk concentrations of stable isotopes in a phase or species. However, the abundance of various isotopologues within a phase, for example the concentration of isotopologues with multiple rare isotopes (multiply substituted or 'clumped' isotopologues) also carries potentially useful information. Specifically, the abundances of clumped isotopologues in an equilibrated system are a function of temperature and thus knowledge of their abundances can be used to calculate a sample’s formation temperature. In this thesis, measurements of clumped isotopologues are made on both carbonate-bearing minerals and methane gas in order to better constrain the environmental and geological histories of various samples.

Clumped-isotope-based measurements of ancient carbonate-bearing minerals, including apatites, have opened up paleotemperature reconstructions to a variety of systems and time periods. However, a critical issue when using clumped-isotope based measurements to reconstruct ancient mineral formation temperatures is whether the samples being measured have faithfully recorded their original internal isotopic distributions. These original distributions can be altered, for example, by diffusion of atoms in the mineral lattice or through diagenetic reactions. Understanding these processes quantitatively is critical for the use of clumped isotopes to reconstruct past temperatures, quantify diagenesis, and calculate time-temperature burial histories of carbonate minerals. In order to help orient this part of the thesis, Chapter 2 provides a broad overview and history of clumped-isotope based measurements in carbonate minerals.

In Chapter 3, the effects of elevated temperatures on a sample’s clumped-isotope composition are probed in both natural and experimental apatites (which contain structural carbonate groups) and calcites. A quantitative model is created that is calibrated by the experiments and consistent with the natural samples. The model allows for calculations of the change in a sample’s clumped isotope abundances as a function of any time-temperature history.

In Chapter 4, the effects of diagenesis on the stable isotopic compositions of apatites are explored on samples from a variety of sedimentary phosphorite deposits. Clumped isotope temperatures and bulk isotopic measurements from carbonate and phosphate groups are compared for all samples. These results demonstrate that samples have experienced isotopic exchange of oxygen atoms in both the carbonate and phosphate groups. A kinetic model is developed that allows for the calculation of the amount of diagenesis each sample has experienced and yields insight into the physical and chemical processes of diagenesis.

The thesis then switches gear and turns its attention to clumped isotope measurements of methane. Methane is critical greenhouse gas, energy resource, and microbial metabolic product and substrate. Despite its importance both environmentally and economically, much about methane’s formational mechanisms and the relative sources of methane to various environments remains poorly constrained. In order to add new constraints to our understanding of the formation of methane in nature, I describe the development and application of methane clumped isotope measurements to environmental deposits of methane. To help orient the reader, a brief overview of the formation of methane in both high and low temperature settings is given in Chapter 5.

In Chapter 6, a method for the measurement of methane clumped isotopologues via mass spectrometry is described. This chapter demonstrates that the measurement is precise and accurate. Additionally, the measurement is calibrated experimentally such that measurements of methane clumped isotope abundances can be converted into equivalent formational temperatures. This study represents the first time that methane clumped isotope abundances have been measured at useful precisions.

In Chapter 7, the methane clumped isotope method is applied to natural samples from a variety of settings. These settings include thermogenic gases formed and reservoired in shales, migrated thermogenic gases, biogenic gases, mixed biogenic and thermogenic gas deposits, and experimentally generated gases. In all cases, calculated clumped isotope temperatures make geological sense as formation temperatures or mixtures of high and low temperature gases. Based on these observations, we propose that the clumped isotope temperature of an unmixed gas represents its formation temperature — this was neither an obvious nor expected result and has important implications for how methane forms in nature. Additionally, these results demonstrate that methane-clumped isotope compositions provided valuable additional constraints to studying natural methane deposits.