158 resultados para Caracterização química
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The production of oil and gas is usually accompanied by the production of water, also known as produced water. Studies were conducted in platforms that discharge produced water in the Atlantic Ocean due to oil and gas production by Petrobras from 1996 to 2006 in the following basins: Santos (Brazilian south region), Campos (Brazilian southeast region) and Ceara (Brazilian northeast region). This study encompasses chemical composition, toxicological effects, discharge volumes, and produced water behavior after releasing in the ocean, including dispersion plumes modeling and monitoring data of the marine environment. The concentration medians for a sampling of 50 samples were: ammonia (70 mg L-1), boron (1.3 mg L1), iron (7.4 mg L-1), BTEX (4.6 mg L-1), PAH (0.53 mg L-1), TPH (28 mg L-1); phenols (1.3 mg L-1) and radioisotopes (0.15 Bq L-1 for 226Ra and 0.09 Bq L-1 for 228Ra). The concentrations of the organic and inorganic parameters observed for the Brazilian platforms were similar to the international reference data for the produced water in the North Sea and in other regions of the world. It was found significant differences in concentrations of the following parameters: BTEX (p<0.0001), phenols (p=0.0212), boron (p<0.0001), iron (p<0.0001) and toxicological response in sea urchin Lytechinus variegatus (p<0.0001) when considering two distinguished groups, platforms from southeast and northeast Region (PCR-1). Significant differences were not observed among the other parameters. In platforms with large gas production, the monoaromatic concentrations (BTEX from 15.8 to 21.6 mg L-1) and phenols (from 2 to 83 mg L-1) were higher than in oil plataforms (median concentrations of BTEX were 4.6 mg L-1 for n=53, and of phenols were 1.3 mg L-1 for n=46). It was also conducted a study about the influence of dispersion plumes of produced water in the vicinity of six platforms of oil and gas production (P-26, PPG-1, PCR-1, P-32, SS-06), and in a hypothetical critical scenario using the chemical characteristics of each effluent. Through this study, using CORMIX and CHEMMAP models for dispersion plumes simulation of the produced water discharges, it was possible to obtain the dilution dimension in the ocean after those discharges. The dispersion plumes of the produced water modelling in field vicinity showed dilutions of 700 to 900 times for the first 30-40 meters from the platform PCR-1 discharge point; 100 times for the platform P-32, with 30 meters of distance; 150 times for the platform P-26, with 40 meters of distance; 100 times for the platform PPG-1, with 130 meters of distance; 280 to 350 times for the platform SS-06, with 130 meters of distance, 100 times for the hypothetical critical scenario, with the 130 meters of distance. The dilutions continue in the far field, and with the results of the simulations, it was possible to verify that all the parameters presented concentrations bellow the maximum values established by Brazilian legislation for seawater (CONAMA 357/05 - Class 1), before the 500 meters distance of the discharge point. These results were in agreement with the field measurements. Although, in general results for the Brazilian produced water presented toxicological effects for marine organisms, it was verified that dilutions of 100 times were sufficient for not causing toxicological responses. Field monitoring data of the seawater around the Pargo, Pampo and PCR-1 platforms did not demonstrate toxicity in the seawater close to these platforms. The results of environmental monitoring in seawater and sediments proved that alterations were not detected for environmental quality in areas under direct influence of the oil production activities in the Campos and Ceara Basin, as according to results obtained in the dispersion plume modelling for the produced water discharge
Resumo:
The production of oil and gas is usually accompanied by the production of water, also known as produced water. Studies were conducted in platforms that discharge produced water in the Atlantic Ocean due to oil and gas production by Petrobras from 1996 to 2006 in the following basins: Santos (Brazilian south region), Campos (Brazilian southeast region) and Ceara (Brazilian northeast region). This study encompasses chemical composition, toxicological effects, discharge volumes, and produced water behavior after releasing in the ocean, including dispersion plumes modeling and monitoring data of the marine environment. The concentration medians for a sampling of 50 samples were: ammonia (70 mg L-1), boron (1.3 mg L1), iron (7.4 mg L-1), BTEX (4.6 mg L-1), PAH (0.53 mg L-1), TPH (28 mg L-1); phenols (1.3 mg L-1) and radioisotopes (0.15 Bq L-1 for 226Ra and 0.09 Bq L-1 for 228Ra). The concentrations of the organic and inorganic parameters observed for the Brazilian platforms were similar to the international reference data for the produced water in the North Sea and in other regions of the world. It was found significant differences in concentrations of the following parameters: BTEX (p<0.0001), phenols (p=0.0212), boron (p<0.0001), iron (p<0.0001) and toxicological response in sea urchin Lytechinus variegatus (p<0.0001) when considering two distinguished groups, platforms from southeast and northeast Region (PCR-1). Significant differences were not observed among the other parameters. In platforms with large gas production, the monoaromatic concentrations (BTEX from 15.8 to 21.6 mg L-1) and phenols (from 2 to 83 mg L-1) were higher than in oil plataforms (median concentrations of BTEX were 4.6 mg L-1 for n=53, and of phenols were 1.3 mg L-1 for n=46). It was also conducted a study about the influence of dispersion plumes of produced water in the vicinity of six platforms of oil and gas production (P-26, PPG-1, PCR-1, P-32, SS-06), and in a hypothetical critical scenario using the chemical characteristics of each effluent. Through this study, using CORMIX and CHEMMAP models for dispersion plumes simulation of the produced water discharges, it was possible to obtain the dilution dimension in the ocean after those discharges. The dispersion plumes of the produced water modelling in field vicinity showed dilutions of 700 to 900 times for the first 30-40 meters from the platform PCR-1 discharge point; 100 times for the platform P-32, with 30 meters of distance; 150 times for the platform P-26, with 40 meters of distance; 100 times for the platform PPG-1, with 130 meters of distance; 280 to 350 times for the platform SS-06, with 130 meters of distance, 100 times for the hypothetical critical scenario, with the 130 meters of distance. The dilutions continue in the far field, and with the results of the simulations, it was possible to verify that all the parameters presented concentrations bellow the maximum values established by Brazilian legislation for seawater (CONAMA 357/05 - Class 1), before the 500 meters distance of the discharge point. These results were in agreement with the field measurements. Although, in general results for the Brazilian produced water presented toxicological effects for marine organisms, it was verified that dilutions of 100 times were sufficient for not causing toxicological responses. Field monitoring data of the seawater around the Pargo, Pampo and PCR-1 platforms did not demonstrate toxicity in the seawater close to these platforms. The results of environmental monitoring in seawater and sediments proved that alterations were not detected for environmental quality in areas under direct influence of the oil production activities in the Campos and Ceara Basin, as according to results obtained in the dispersion plume modelling for the produced water discharge
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
The extraction, chemical and structural characterization of a wide variety of compounds derived from plants has been a major source of bioactive molecules. Several proteases have been isolated in the plant kingdom, with numerous pharmacological and biotechnological applications. Among the proteases isolated from plants, are the fibrinogenolytic, with relevant application in the treatment of disorders in the coagulation cascade, in addition to potential use as a tool in clinical laboratories. In this study, in addition to evaluating the effects of the protein extract of Cnidoscolus urens (L.) Arthur (Euphorbiaceae) in the coagulation cascade also investigates the presence of antimicrobial activity and characterizes the proteolytic activity detected in this extract, aiming to determine their potential pharmacological and biotechnological application. In this way, crude protein extracts obtained from the leaves of C. urens in Tris-HCl 0.05M, NaCl 0.15M, pH 7.5, were precipitated in different concentrations of acetone, and assessed for the presence of proteolytic activity in azocaseína and fibrinogen. The most active fraction (F1.0) in these tests was chosen for assessment of biological activity and biochemical characterization. The Aα chain and Bβ of fibrinogen were completely cleaved at a concentration of 0.18 μg/μL of protein fraction in 4 minutes. Fibrinogenolytic activity presented total inhibition in the presence of E-64 and partial in the presence of EDTA. The fraction demonstrated coagulant activity in plasm and reduced the APTT, demonstrating acting on the factors coagulation of the intrinsic pathway and common, not exerting effects on the PT. Fibrinolytic activity on plasma clot was detected only in SDS-PAGE in high concentrations of fraction, and there were no defibrinating. Although several proteases isolated from plants and venomous animals are classically toxic, the fraction F1.0 of C. urens not expressed hemorrhagic nor hemolytic activities. Fraction F1.0 also showed no antimicrobial activity. In proteolytic activity on the azocasein, the optimal pH was 5.0 and optimum temperature of 60ºC. The enzyme activity has been shown to be sensitive to the presence of salts tested, with inhibition for all compounds. The surfactant triton did not influence the enzyme activity, but the tween-20 and SDS inhibited the activity. In the presence of reducing agents increase in enzyme activity occurred, a typical feature of enzymes belonging to the class of cysteine proteases. Several bands with proteolytic activity were detected in zymogram, in the region of high-molecular-weight, which were inhibited by E-64. In this study, we found that C. urens presents in its constitution cysteine proteases with fibrinogenolytic and procoagulant activity, which may be isolated, with potential application in treatment of bleeding disorders, thrombolytic and clinical laboratory
Resumo:
The potential market of the metropolitan area of Salvador accounts for the estimated consumption of roughly 800 million horizontally perforated extruded clay bricks a year. The growing demand of consumers along with the competitiveness of the structural ceramic sector has driven forward a number of recent efforts and investments towards improving the quality of structural ceramics. In this scenario, the present study focused on sampling and evaluating the conformity of 8-hole horizontally perforated extruded clay bricks manufactured by different plants (A, B and C) in the metropolitan area of Salvador. In addition, representative clay and sandy-clay materials were collected from each plant and characterized by conventional physical, chemical and mineralogical techniques. Finally, experimental compositions designated as A, B and C, according to the source, were prepared by mixing different contents of the raw materials collected in the plants, fired at different temperatures and characterized. The results revealed a series of non conformities regarding ABNT guidelines. The characterization of raw materials revealed the presence of kaolinite and ilite in concentrations ranging from 64 to 90 wt.% along with free quartz (10 - 25%). The sandy-clay samples consisted basically of kaolinite. All raw materials depicted low contents of organics, amorphous constituents, alkaline oxides and feldspar. An analysis of the firing behavior of all different ceramic compositions revealed that the linear contraction of composition A was rather significant considering the temperature range evaluated, and it justifies the significant dimensional non conformity that was shown by bricks made with the ceramic A
Resumo:
The quantitative chemical characterization of the inorganic fraction of scale products is very relevant in studying, monitoring and controlling corrosive processes of oil pipelines. The X-ray fluorescence spectrometry (XRF) is a very versatile analytical technique, which can be used in quantitative analysis in solid samples at low concentrations of the chemical element, in the order of few ppm. A methodology that involves sample preparation diluted in the proportion of 1:7 (one portion of the sample for seven of wax), pressed as pellets was used in the XRF calibration for chemical analysis of scale products from oil pipelines. The calibration involved the preparation of reference samples from mixtures of P.A. reagents, aiming to optimize the time consumed in the steps of sample preparation and analysis of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Sr and Ti, using the same pressed pellet for trace and major elements analysis
Resumo:
This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
Natural oils have shown a scientific importance due to its pharmacological activity and renewable character. The copaiba (Copaifera langsdorffii) and Bullfrog (Rana catesbeiana Shaw) oils are used in folk medicine particularly because the anti-inflammatory and antimicrobial activities. Emulsion could be eligible systems to improve the palatability and fragrance, enhance the pharmacological activities and reduce the toxicological effects of these oils. The aim of this work was to investigate the antimicrobial activity of emulsions based on copaiba (resin-oil and essential-oil) and bullfrog oils against fungi and bacteria which cause skin diseases. Firstly, the essential oil was extracted from copaiba oil-resin and the oils were characterized by gas chromatography coupled to a mass spectrometry (GC-MS). Secondly, emulsion systems were produced. A microbiological screening test with all products was performed followed (the minimum inhibitory concentration, the bioautography method and the antibiofilm determination). Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Candida albicans, C. parapsilosis, C. glabrata, C. krusei and C. tropicalis American Type Culture Collection (ATCC) and clinical samples were used. The emulsions based on copaiba oil-resin and essential oil improved the antimicrobial activity of the pure oils, especially against Staphylococcus e Candida resistant to azoles. The bullfrog oil emulsion and the pure bullfrog oil showed a lower effect on the microorganisms when compared to the copaiba samples. All the emulsions showed a significant antibiofilm activity by inhibiting the cell adhesion. Thus, it may be concluded that emulsions based on copaiba and bullfrog oils are promising candidates to treatment of fungal and bacterial skin infections
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
During the process of the salt production, the first the salt crystals formed are disposed of as industrial waste. This waste is formed basically by gypsum, composed of calcium sulfate dihydrate (CaSO4.2H2O), known as carago cru or malacacheta . After be submitted the process of calcination to produce gypsum (CaSO4.0,5H2O), can be made possible its application in cement industry. This work aims to optimize the time and temperature for the process of calcination of the gypsum (carago) for get beta plaster according to the specifications of the norms of civil construction. The experiments involved the chemical and mineralogical characterization of the gypsum (carago) from the crystallizers, and of the plaster that is produced in the salt industry located in Mossoró, through the following techniques: x-ray diffraction (XRD), x-ray fluorescence (FRX), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM) with EDS. For optimization of time and temperature of the process of calcination was used the planning three factorial with levels with response surfaces of compressive mechanical tests and setting time, according norms NBR-13207: Plasters for civil construction and x-ray diffraction of plasters (carago) beta obtained in calcination. The STATISTICA software 7.0 was used for the calculations to relate the experimental data for a statistical model. The process for optimization of calcination of gypsum (carago) occurred in the temperature range from 120° C to 160° C and the time in the range of 90 to 210 minutes in the oven at atmospheric pressure, it was found that with the increase of values of temperature of 160° C and time calcination of 210 minutes to get the results of tests of resistance to compression with values above 10 MPa which conform to the standard required (> 8.40) and that the X-ray diffractograms the predominance of the phase of hemidrato beta, getting a beta plaster of good quality and which is in accordance with the norms in force, giving a by-product of the salt industry employability in civil construction
Resumo:
The production of enzymes by microorganisms using organic residues is important and it can be associated with several applications such as food and chemical industries and so on. The objective of this work is the production of CMCase, Xylanase, Avicelase and FPase enzymes by solid state fermentation (SSF) using as substrates: bagasse of coconut and dried cashew stem. The microorganisms employed are Penicillium chrysogenum and an isolated fungus from the coconut bark (Aspergillus fumigatus). Through the factorial design methodology and response surface analysis it was possible to study the influence of the humidity and pH. For Penicillium chrysogenum and the isolated fungus, the coconut bagasse was used as culture medium. In another fermentation, it was used the mixture of coconut bagasse and cashew stem. Fermentations were conducted using only the coconut bagasse as substrate in cultures with Penicillium chrysogenum fungus and the isolated one. A mixture with 50% of coconut and 50% of cashew stem was employed only for Penicillium chrysogenum fungus, the cultivation conditions were: 120 hours at 30 °C in BOD, changing humidity and pH values. In order to check the influence of the variables: humidity and pH, a 2 2 factorial experimental design was developed, and then two factors with two levels for each factor and three repetitions at the central point. The levels of the independent variables used in ascending order (-1, 0, +1), to humidity, 66%, 70.5% and 75% and pH 3, 5 and 7, respectively. The software STATISTICA TM (version 7.0, StatSoft, Inc.) was used to calculate the main effects of the variables and their interactions. The response surface methodology was used to optimize the conditions of the SSF. A chemical and a physic-chemical characterization of the coconut bagasse have determined the composition of cellulose (%) = 39.09; Hemicellulose (%) = 23.80, Total Lignin (%) = 36.22 and Pectin (%) = 1.64. To the characterization of cashew stem, the values were cellulose (g) = 15.91 Hemicellulose (%) = 16.77, Total Lignin (%) = 30.04 and Pectin (%) = 15.24. The results indicate the potential of the materials as substrate for semisolid fermentation enzyme production. The two microorganisms used are presented as good producers of cellulases. The results showed the potential of the fungus in the production of CMCase enzyme, with a maximum of 0.282 UI/mL and the Avicelase enzyme the maximum value ranged from 0.018 to 0.020 UI/ mL, using only coconut bagasse as substrate. The Penicillium chrysogenum fungus has showed the best results for CMCase = 0.294 UI/mL, FPase = 0.058 UI/mL, Avicelase = 0.010 UI/mL and Xylanase = 0.644 UI/ mL enzyme, using coconut bagasse and cashew stem as substrates. The Penicllium chrysogenum fungus showed enzymatic activities using only the coconut as substrate for CMCase = 0.233 UI/mL, FPase = 0.031 to 0.032 UI/ mL, Avicelase = 0.018 to 0.020 UI/mL and Xylanase = 0.735 UI/ mL. Thus, it can be concluded that the used organisms and substrates have offered potential for enzyme production processes in a semi-solid cultivation
Resumo:
In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites