31 resultados para Cana-de-açúcar - Efeito do stress
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
Plants are organisms sessile and because of this they are susceptible to genotoxic effects due to environmental exposure such as light [including ultraviolet (UV)], heat, drought and chemicals agents. Therefore, there are differents pathways in order to detect a lesion and correct. These pathways are not well known in plants. The MutM/Fpg protein is a DNA glycosylase that is responsible for detect and correct oxidative lesions. In the sugarcane genome, it was found two possible cDNAs that had homology to this protein: scMUTM1 and scMUTM2. The aim of this work was to characterize the role of these cDNAs in plants. In order to do this, the expression level after oxidative stress was evaluated by semiquantitative RT-PCR. Another point analyzed in order to obtain the full-length gene, it was to use a sugarcane genomic library that was hybridized with both cDNAs as a probe. It was found two clones that will bought and sequenced. The promoter region was also cloned. It was obtained sequences only for scMUTM2 promoter region. The sequences obtained were divided into six groups. It was found regulatory motifs such as TATA-box, CAAT-box, oxidative stress element response and regulatory regions that response to light. The other point analyzed was to characterize the N-terminal region by PCR constructs. These constructs have deletions at 5 region. These sequences were introduce into Escherichia coli wild type strain (CC104) and double mutant (CC104mutMmutY). The results showed that proteins with deletions of scMUTM1 N-terminal region were able to complement the Fpg and MutY-glycosylase deficiency in CC104 mutMmutY reducing the spontaneous mutation frequency
Resumo:
The genome of all organisms is subject to injuries that can be caused by endogenous and environmental factors. If these lesions are not corrected, it can be fixed generating a mutation which can be lethal to the organisms. In order to prevent this, there are different DNA repair mechanisms. These mechanisms are well known in bacteria, yeast, human, but not in plants. Two plant models Oriza sativa and Arabidopsis thaliana had the genome sequenced and due to this some DNA repair genes have been characterized. The aim of this work is to characterized two sugarcane cDNAs that had homology to AP endonuclease: scARP1 and scARP3. In silico has been done with these two sequences and other from plants. It has been observed domain conservation on these sequences, but the cystein at 65 position that is a characteristic from the redox domain in APE1 protein was not so conservated in plants. Phylogenetic relationship showed two branches, one branch with dicots and monocots sequence and the other branch with only monocots sequences. Another approach in order to characterized these two cDNAs was to construct overexpression cassettes (sense and antisense orientation) using the 35S promoter. After that, these cassettes were transferred to the binary vector pPZP211. Furthermore, previously in the laboratory was obtained a plant from nicotiana tabacum containing the overexpression cassette in anti-sense orientation. It has been observed that this plant had a slow development and problems in setting seeds. After some manual crossing, some seeds were obtained (T2) and it was analyzed the T2 segregation. The third approach used in this work was to clone the promoter region from these two cDNAs by PCR walking. The sequences obtained were analyzed using the program PLANTCARE. It was observed in these sequences some motives that may be related to oxidative stress response
Resumo:
The sugarcane is a monocot plant grown in tropical and subtropical regions, with Brazil being the largest producer. Despite its economic importance, little is known about the molecular flowering process in sugarcane. This physiological process can promote a loss up to 60% in sugar or bioethanol. Thus, this work had as objective characterize a HINT1 homologous gene previously identified in subtractive libraries of flowering. Genomic analysis of gene and promoter region structure allowed the observation that there are at least two distinct genes homologous to HINT on sugarcane. Bioinformatics analyses showed the conservation of the characteristic protein domain of HIT superfamily and indicate a phylogenetic relationship associated to cell location. Moreover, a possible relation with the SBTILISIN-like protein family through the information available in interatomas was observed. This suggests that the HINT gene of sugarcane can be related to plant development, there are several possibilities of interactions in the regulation of floral induction process, because the sequences present in regulatory regions indicate that differential expression of HINT was related to with climatic factors in the Northeast region of Brazil as well as to biotic stress and phytohormones. Furthermore, the sugarcane phenotypes indicate that the influence of HINT may happen due to product accumulation of its enzymatic activity. For these characteristics this gene can be used as a marker in the selection of new varieties.
Resumo:
Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.
Resumo:
Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
PEDRO, Edilson da Silva. Estratégias para a organização da pesquisa em cana-de-açúcar: uma análise de governança em sistemas de inovação. 2008. 226f. Tese (Doutorado em Política Científica e Tecnológica) - Universidade Estadual de Campinas, Campinas, 2008.
Resumo:
In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3
Resumo:
Flowering is controlled by several environmental and endogenous factors, usually associated with a complex network of metabolic mechanisms. The gene characterization in Arabidopsis model has provided much information about the genetic and molecular mechanisms that control flowering process. Some of these genes had been found in rice and maize. However, in sugarcane this processe is not well known. It is known that early flowering may reduce its production up to 60% at northeast conditions. Considering the impact of early flowering in sugarcane production, the aim of this work was to make the gene characterization of two cDNAs previously identified in subtractive cDNA libraries: scPKCI and scSHAGGY. The in silico analysis showed that these two cDNAs presented both their sequence and functional catalytic domains conserved. The results of transgenic plants containing the overexpression of the gene cassette scPKCI in sense orientation showed that this construction had a negative influence on the plant development as it was observed a decrease in plant height and leaf size. For the scPKCI overexpression in antisense orientation it was observed change in the number of branches from T1 transgenic plants, whereas transgenic T2 plants showed slow development during germination and initial stages of development. The other cDNA analyzed had homology to SHAGGY protein. The overexpression construct in sense orientation did not shown any effect on development. The only difference observed it was an increase in stigma structure. These results allowed us to propose a model how these two genes may be interact and affect floweringdevelopment.