5 resultados para C source
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays, technology has a direct influence on the relationship student and teacher have with language. The internet is a powerful tool in helping work with the language and, through it, the knowledge comes to the student easily and intensely. Furthermore, this facility has enhanced and made visible what has been called, within the University community, "plagiarism generation." This work assumes that this generation has, in their written texts, symbolic movements similar to those of "copy and paste" applied to research work carried out by high school students. Taking this as starting point, this dissertation aims to analyze how high school students of the 1st year from a school in Natal (RN) construct texts, under the movements known as "Ctrl + c" and "Ctrl + v", with reference to the text of the "other". More specific issues are behind the general objective, namely: 1. how the student appropriates the source-text when he copies and pastes? 2. What are the categories of analysis that allow us to look analytically and theoretically for the "ctrl + c / ctrl + v" practice made by the student? 2. how the studies developed in the fields of "Genetic Criticism" (Grésillon, 1987), the "school manuscripts" (Calil, 2004) and "paraphrase" (Fuchs, 1982) may help in working with writing in the classroom standing as a possible way to minimize the copy and paste effects in the students texts? Thus, we observe the categories of analysis that allow us to look, theoretically and analytically, for the symbolic ritual of the "ctrl + c" (copy) and "ctrl + v" (paste) in high school. Our study shows that the student text is a "hybrid body" whose writing is a drawing entanglement because of the presence of the foreign text, verbatim, and the presence of linguistic elements to paraphrase the original text.This textual embodiment has, behind it, certain operations, namely: replacing, moving, adding and deleting statements. Given the specificity of the data and the research objectives, this study aligns with qualitative research methods (SILVERMAN, 2009) and falls within the knowledge field of Applied Linguistics, which is characterized especially by investigating problems, phenomena in which language in a real situation is taken as central (BRUMFIT, 1995).Theoretically, our work follows the approach of studies on the paraphrase (Fuchs, 1982, 1994a, 1994b; DAUNAY, 1997, 1999, 2002a, 2002b), the studies developed in the field of Genetic Criticism (Grésillon, 1987, 1994, 1992, 2008 ) and those developed by Eduardo Calil (2004) on "school manuscripts"
Resumo:
Mainstream programming languages provide built-in exception handling mechanisms to support robust and maintainable implementation of exception handling in software systems. Most of these modern languages, such as C#, Ruby, Python and many others, are often claimed to have more appropriated exception handling mechanisms. They reduce programming constraints on exception handling to favor agile changes in the source code. These languages provide what we call maintenance-driven exception handling mechanisms. It is expected that the adoption of these mechanisms improve software maintainability without hindering software robustness. However, there is still little empirical knowledge about the impact that adopting these mechanisms have on software robustness. This work addresses this gap by conducting an empirical study aimed at understanding the relationship between changes in C# programs and their robustness. In particular, we evaluated how changes in the normal and exceptional code were related to exception handling faults. We applied a change impact analysis and a control flow analysis in 100 versions of 16 C# programs. The results showed that: (i) most of the problems hindering software robustness in those programs are caused by changes in the normal code, (ii) many potential faults were introduced even when improving exception handling in C# code, and (iii) faults are often facilitated by the maintenance-driven flexibility of the exception handling mechanism. Moreover, we present a series of change scenarios that decrease the program robustness
Resumo:
Camu-camu (Myrciaria dubia H.B.K. (McVaugh)) is a native Amazon fruit, recognized worldwide as one of the main natural sources of ascorbic acid. Due to its great acidity, this fruit is generally consumed after processing into juice or as ingredient in food preparations. As a co-product of the camu-camu processing, a significant amount of agroindustrial residue is generated. Despite the studies showing the bioactive value and biological potential of the fruit, few studies have approached the possible processing techniques, transformation and preservation of camu-camu fruits and its agroindustrial pomace. Therefore, the present work has the objective of evaluating two different drying processes applied to camu-camu pomace (peel and seeds with residual pulp), freeze drying and hot air drying, in order to obtain a functional fruit product. This thesis was divided into three stages: the first one shows the studies related to the freeze drying and hot air drying, where we demonstrated the impact of the selected drying techniques on the bioactive components of camu-camu, taking the fresh pomace as the control group. Among the investigated conditions, the groups obtained at 50ºC and 4 m/s (SC50) and 80ºC and 6 m/s (SC80) were selected as for further studies, based on their ascorbic acid final content and Folin-Ciocalteau reducing capacity. In addition to SC50 and SC80, the fresh pomace (RF) and freeze dried (RL) samples were also evaluated in these further stages of the research. Overall, the results show higher bioactive concentration in the RF samples, followed by RL, SC50 and SC80. On the second step of the research, the antioxidant, antimicrobial and antienzymatic activities were evaluated and the same tendency was observed. It was also reported, for the first time in the literature, the presence of syringic acid in dried camu-camu pomace. In the third and final stage of the research, it was investigated the effect of dried camu-camu on aging and neuroprotective disorders, using the in vivo model C.elegans. It was observed that camu-camu extracts were able to modulate important signaling genes relevant to thermal and oxidative stresses (p < 0.05). The polar acid, polar basic and polar neutral fractions obtained from the low molecular extracts of SC50 were able to extend the lifespan of wild type N2 C. elegans in 20% and 13% (p < 0.001). Results also showed that the paralysis induced by the β1-42 amyloid was significantly (p < 0.0001) retarded in CL4176 worms. Similarly, the camu-camu extracts attenuated the dopaminergic induction associated to Parkinson’s disease. Finally, a global analysis of the data presented here reveal that the camu-camu pomace, a co-product obtained from the industrial processing of a native Brazilian fruit, is a relevant natural source of health relevant compounds. This thesis, shows for the first time, the multifunctionality of camu-camu pomace, a natural resource still underexploited for scientific, commercial and technological purposes.
Resumo:
This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.
Resumo:
This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.