4 resultados para BACTERIAL-DNA

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advances in vaccine development and therapy, bacterial meningitis (BM) remains a major cause of death and long-term neurological disabilities. As part of the host inflammatory response to the invading pathogen, factors such as reactive oxygen species are generated, which may damage DNA and trigger the overactivation of DNA repair mechanisms. It is conceivable that the individual susceptibility and outcome of BM may be in part determined by non synonymous polymorphisms that may alter the function of crucial BER DNA repair enzymes as PARP-1, OGG-1 and APE-1. These enzymes, in addition to their important DNA repair function, also perform role of inflammatory regulators. In this work was investigated the non synonymous SNPs APE-1 Asn148Glu, OGG-1 Ser326Cys,PARP-1 Val762Ala, PARP-1 Pro882Leu and PARP-1 Cys908Tyr in patients with bacterial meningitis (BM), chronic meningitis (CM), aseptic meningitis (AM) and not infected (controls). As results we found increased frequency of variant alleles of PARP-1 Val762Ala (P = 0.005) and APE-1 Asn148Glu (P=0.018) in BM patients, APE-1 Asn148Glu in AM patients (P = 0.012) and decrease in the frequency of the variant allele OGG-1 Ser326Cys in patients with CM (P = 0.013), regarding the allelic frequencies in the controls. A major incidence of individuals heterozygous and/ or polymorphic homozygous in BM for PARP-1 Val762Ala (P= 0.0399, OD 4.2, 95% IC 1.213 -14.545) and PARP-1 Val762Ala/ APE-1 Asn148Glu (P = 0.0238, OD 11.111, 95% IC 1.274 - 96.914) was observed related to what was expected in a not infected population. It was also observed a major incidence of combined SNPs in the BM patients compared with the control group (P=0.0281), giving evidences that SNPs can cause some susceptibility to the disease. This combined effect of SNPs seems to regulate the principal cytokines and other factors related to BM inflammatory response and point the importance of DNA repair not only to repair activity when DNA is damaged, but to others essential functions to human organism balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Infiltration of organic fluids and microorganisms at the abutment/implant interface may result in bacterial infection of peri-implant tissues. Internal colonization of periodontal pathogens may be caused by bacteria trapped during installation or penetration of abutment/implant leakage. The aim of this study was to detect periodontal pathogens in the internal area of dental implants before loading. Materials and Methods: Seventy-eight implants in 32 partially edentulous subjects were selected for this evaluation. A bacterial biofilm sample of the internal surface of each implant was taken and analyzed for the presence of 40 microorganisms by checkerboard DNA-DNA hybridization, prior to installation of healing or any other prosthetic abutment. Discussion: Bacteria were detected in 20 patients (62.5%), distributed in 41 implants (52.6%). Forty-seven percent of implants showed no bacterial detection. Spontaneous early implant exposure to oral cavity during the healing period was not significant (P >0.05) to increase bacterial prevalence, but implants placed at mandible had higher bacterial prevalence than maxillary ones. Conclusion: The internal surface of dental implants can serve as a reservoir of periodontal pathogens for future implant/abutment interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context