40 resultados para Arquiteturas enterradas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures
Resumo:
The Reconfigurables Architectures had appeares as an alternative to the ASICs and the GGP, keeping a balance between flexibility and performance. This work presents a proposal for the modeling of Reconfigurables with Chu Spaces, describing the subjects main about this thematic. The solution proposal consists of a modeling that uses a generalization of the Chu Spaces, called of Chu nets, to model the configurations of a Reconfigurables Architectures. To validate the models, three algorithms had been developed and implemented to compose configurable logic blocks, detection of controllability and observability in applications for Reconfigurables Architectures modeled by Chu nets
Resumo:
The use of Multiple Input Multiple Output (MIMO) systems has permitted the recent evolution of wireless communication standards. The Spatial Multiplexing MIMO technique, in particular, provides a linear gain at the transmission capacity with the minimum between the numbers of transmit and receive antennas. To obtain a near capacity performance in SM-MIMO systems a soft decision Maximum A Posteriori Probability MIMO detector is necessary. However, such detector is too complex for practical solutions. Hence, the goal of a MIMO detector algorithm aimed for implementation is to get a good approximation of the ideal detector while keeping an acceptable complexity. Moreover, the algorithm needs to be mapped to a VLSI architecture with small area and high data rate. Since Spatial Multiplexing is a recent technique, it is argued that there is still much room for development of related algorithms and architectures. Therefore, this thesis focused on the study of sub optimum algorithms and VLSI architectures for broadband MIMO detector with soft decision. As a result, novel algorithms have been developed starting from proposals of optimizations for already established algorithms. Based on these results, new MIMO detector architectures with configurable modulation and competitive area, performance and data rate parameters are here proposed. The developed algorithms have been extensively simulated and the architectures were synthesized so that the results can serve as a reference for other works in the area
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks
Resumo:
There are some approaches that take advantage of unused computational resources in the Internet nodes - users´ machines. In the last years , the peer-to-peer networks (P2P) have gaining a momentum mainly due to its support for scalability and fault tolerance. However, current P2P architectures present some problems such as nodes overhead due to messages routing, a great amount of nodes reconfigurations when the network topology changes, routing traffic inside a specific network even when the traffic is not directed to a machine of this network, and the lack of a proximity relationship among the P2P nodes and the proximity of these nodes in the IP network. Although some architectures use the information about the nodes distance in the IP network, they use methods that require dynamic information. In this work we propose a P2P architecture to fix the problems afore mentioned. It is composed of three parts. The first part consists of a basic P2P architecture, called SGrid, which maintains a relationship of nodes in the P2P network with their position in the IP network. Its assigns adjacent key regions to nodes of a same organization. The second part is a protocol called NATal (Routing and NAT application layer) that extends the basic architecture in order to remove from the nodes the responsibility of routing messages. The third part consists of a special kind of node, called LSP (Lightware Super-Peer), which is responsible for maintaining the P2P routing table. In addition, this work also presents a simulator that validates the architecture and a module of the Natal protocol to be used in Linux routers
Resumo:
The exponential growth in the applications of radio frequency (RF) is accompanied by great challenges as more efficient use of spectrum as in the design of new architectures for multi-standard receivers or software defined radio (SDR) . The key challenge in designing architecture of the software defined radio is the implementation of a wide-band receiver, reconfigurable, low cost, low power consumption, higher level of integration and flexibility. As a new solution of SDR design, a direct demodulator architecture, based on fiveport technology, or multi-port demodulator, has been proposed. However, the use of the five-port as a direct-conversion receiver requires an I/Q calibration (or regeneration) procedure in order to generate the in-phase (I) and quadrature (Q) components of the transmitted baseband signal. In this work, we propose to evaluate the performance of a blind calibration technique without additional knowledge about training or pilot sequences of the transmitted signal based on independent component analysis for the regeneration of I/Q five-port downconversion, by exploiting the information on the statistical properties of the three output signals
Resumo:
In this work, we propose a new approach to Interactive Digital Television (IDTV), aimed to explore the concepts of immersivity. Several architectures have been proposed to IDTV, but they did not explore coherently questions related to immersion. The goal of this thesis consists in defining formally what is immersion and interactivity for digital TV and how they may be used to improve user experience in this new televisive model. The approach raises questions such as the appropriate choice of equipment to assist in the sense of immersion, which forms of interaction between users can be exploited in the interaction-immersion context, if the environment where an immersive and interactive application is used can influence the user experience, and which new forms of interactivity between users, and interactivity among users and interactive applications can be explored with the use of immersion. As one of the goals of this proposal, we point out new solutions to these issues that require further studies. We intend to formalize the concepts that embrace interactivity in the brazilian system of digital TV. In an initial study, this definition is organized into categories or levels of interactivity. From this point are made analisis and specifications to achieve immersion using DTV. We pretend to make some case studies of immersive interactive applications for digital television in order to validate the proposed architecture. We also approach the use of remote devices anda proposal of middleware architecture that allows its use in conjunction with immersive interactive applications
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
This work shows a theoretical analysis together with numerical and experimental results of transmission characteristics from the microstrip bandpass filters with different geometries. These filters are built over isotropic dielectric substrates. The numerical analysis is made by specifical commercial softwares, like Ansoft Designer and Agilent Advanced Design System (ADS). In addition to these tools, a Matlab Script was built to analyze the filters through the Finite-Difference Time-Domain (FDTD) method. The filters project focused the development of the first stage of filtering in the ITASAT s Transponder receptor, and its integration with the others systems. Some microstrip filters architectures have been studied, aiming the viability of implementation and suitable practical application for the purposes of the ITASAT Project due to its lowspace occupation in the lower UHF frequencies. The ITASAT project is a Universityexperimental project which will build a satellite to integrate the Brazilian Data Collect System s satellite constellation, with efforts of many Brazilian institutes, like for example AEB (Brazilian Spatial Agency), ITA (Technological Institute of Aeronautics), INPE/CRN (National Institute of Spatial Researches/Northeastern Regional Center) and UFRN (Federal University of Rio Grande do Norte). Comparisons were made between numerical and experimental results of all filters, where good agreements could be noticed, reaching the most of the objectives. Also, post-work improvements were suggested.
Resumo:
Industrial automation networks is in focus and is gradually replacing older architectures of systems used in automation world. Among existing automation networks, most prominent standard is the Foundation Fieldbus (FF). This particular standard was chosen for the development of this work thanks to its complete application layer specification and its user interface, organized as function blocks and that allows interoperability among different vendors' devices. Nowadays, one of most seeked solutions on industrial automation are the indirect measurements, that consist in infering a value from measures of other sensors. This can be made through implementation of the so-called software sensors. One of the most used tools in this project and in sensor implementation are artificial neural networks. The absence of a standard solution to implement neural networks in FF environment makes impossible the development of a field-indirect-measurement project, besides other projects involving neural networks, unless a closed proprietary solution is used, which dos not guarantee interoperability among network devices, specially if those are from different vendors. In order to keep the interoperability, this work's goal is develop a solution that implements artificial neural networks in Foundation Fieldbus industrial network environment, based on standard function blocks. Along the work, some results of the solution's implementation are also presented
Resumo:
The last years have presented an increase in the acceptance and adoption of the parallel processing, as much for scientific computation of high performance as for applications of general intention. This acceptance has been favored mainly for the development of environments with massive parallel processing (MPP - Massively Parallel Processing) and of the distributed computation. A common point between distributed systems and MPPs architectures is the notion of message exchange, that allows the communication between processes. An environment of message exchange consists basically of a communication library that, acting as an extension of the programming languages that allow to the elaboration of applications parallel, such as C, C++ and Fortran. In the development of applications parallel, a basic aspect is on to the analysis of performance of the same ones. Several can be the metric ones used in this analysis: time of execution, efficiency in the use of the processing elements, scalability of the application with respect to the increase in the number of processors or to the increase of the instance of the treat problem. The establishment of models or mechanisms that allow this analysis can be a task sufficiently complicated considering parameters and involved degrees of freedom in the implementation of the parallel application. An joined alternative has been the use of collection tools and visualization of performance data, that allow the user to identify to points of strangulation and sources of inefficiency in an application. For an efficient visualization one becomes necessary to identify and to collect given relative to the execution of the application, stage this called instrumentation. In this work it is presented, initially, a study of the main techniques used in the collection of the performance data, and after that a detailed analysis of the main available tools is made that can be used in architectures parallel of the type to cluster Beowulf with Linux on X86 platform being used libraries of communication based in applications MPI - Message Passing Interface, such as LAM and MPICH. This analysis is validated on applications parallel bars that deal with the problems of the training of neural nets of the type perceptrons using retro-propagation. The gotten conclusions show to the potentiality and easinesses of the analyzed tools.
Resumo:
The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors