4 resultados para Animal locomotion Disorders
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions
Resumo:
The use of non-human primates in scientific research has contributed significantly to the biomedical area and, in the case of Callithrix jacchus, has provided important evidence on physiological mechanisms that help explain its biology, making the species a valuable experimental model in different pathologies. However, raising non-human primates in captivity for long periods of time is accompanied by behavioral disorders and chronic diseases, as well as progressive weight loss in most of the animals. The Primatology Center of the Universidade Federal do Rio Grande do Norte (UFRN) has housed a colony of C. jacchus for nearly 30 years and during this period these animals have been weighed systematically to detect possible alterations in their clinical conditions. This procedure has generated a volume of data on the weight of animals at different age ranges. These data are of great importance in the study of this variable from different perspectives. Accordingly, this paper presents three studies using weight data collected over 15 years (1985-2000) as a way of verifying the health status and development of the animals. The first study produced the first article, which describes the histopathological findings of animals with probable diagnosis of permanent wasting marmoset syndrome (WMS). All the animals were carriers of trematode parasites (Platynosomum spp) and had obstruction in the hepatobiliary system; it is suggested that this agent is one of the etiological factors of the syndrome. In the second article, the analysis focused on comparing environmental profile and cortisol levels between the animals with normal weight curve evolution and those with WMS. We observed a marked decrease in locomotion, increased use of lower cage extracts and hypocortisolemia. The latter is likely associated to an adaptation of the mechanisms that make up the hypothalamus-hypophysis-adrenal axis, as observed in other mammals under conditions of chronic malnutrition. Finally, in the third study, the animals with weight alterations were excluded from the sample and, using computational tools (K-means and SOM) in a non-supervised way, we suggest found new ontogenetic development classes for C. jacchus. These were redimensioned from five to eight classes: infant I, infant II, infant III, juvenile I, juvenile II, sub-adult, young adult and elderly adult, in order to provide a more suitable classification for more detailed studies that require better control over the animal development
Resumo:
Memory and anxiety are related phenomena. Several evidences suggest that anxiety is fundamental for learnining and may facilitate or impair the memory formation process depending of the context. The majority of animal studies of anxiety and fear use only males as experimental subjects, while studies with females are rare in the literature. However, the prevalence in phobic and anxiety disorders is greater in women than in men. Moreover, it is known that gender maybe influence benzodiazepine effects, the classic drugs used for anxiety disorders treatment. In this respect, to further investigate if fear/anxiety aspects related to learning in female subjects would contribute to the study of phobic and anxiety disorders and their relationship with learning/memory processes, the present work investigates (a) the effects of benzodiazepine diazepam on female rats performance in a aversive memory task that assess concomitantly anxiety/emotionality, as the interaction between both; (b) the influence of estrous cycle phases of female rats on diazepam effects at aversive memory and anxiety/emotionality, and the interaction between both and (c) the role of hormonal fluctuations during estrous cycle phases in absence of diazepam effects in proestrus, because female rats in this phase received or not mifepristone, the antagonist of progesterone receptor, previously to the diazepam treatment. For this purpose, the plus maze discriminative avoidance task, previously validated for studies of anxiety concomitantly to learning/memory, was used. The apparatus employed is an adaptation of a conventional plus maze, with two opens arms and two closed arms, one of which presenting aversive stimulation (noise and light). The parameters used were: time in non-aversive arm compared to time in aversive and percentage of time in aversive arm on several temporal divisions, in order to evaluate memory; percentage of time in open arms, risk assessment, head dipping and end exploring to evaluate anxiety ; and distance traveled for locomotion. In experiment I, we found anxiolytic effect of diazepam only for 4 mg/kg dose, however the amnestic effect appear at a dose of 2 mg/kg. In second experiment, rats were divided in groups according estrous cycle phase (metaestrus/diestrus, proestrus e estrus). In this experiment, when we considered estrous cycle phase or diazepam treatment, the results did not demonstrate any differences in anxiety/emotionality parameters. The amnestic effects of diazepam occur in female rats in metestrus/diestrus and estrus and is absent in proestrous rats. Proestrous female rats that received mifepristone exhibited the amnestic effect of diazepam and also anxiolytic effects, that it was not previously observed in this dose. The results have demonstrated dissociation of anxiolytic and amnestic diazepam effects, not previously observed in males; the absence of amnestic effect of diazepam in proestrous phase; and the possible role of progesterone in aversive memory over diazepam effect, because the mifepristone, associated with diazepam, caused amnestic effect in proestrus
Resumo:
Bipolar disorder is a chronic psychopathology that reaches from 1 to 4% of the world population. This mood disorder is characterized by cyclical mood changes, in which an individual alternates between states of depression and mania. Mania is described in the literature as an abnormal state of exacerbation of humor, in which the subject presents an expansive, euphoric behavior, but with increased irritability, psychomotor agitation and a feeling of invincibility, which will contribute to risks exposure. The treatment of this psychopathology is complex and it is not effective in all cases, and it evokes many side effects. In this respect, the system of Nociceptin/Orphanin FQ (N/OFQ) can be studied as a possible therapeutic target for the treatment of bipolar disorder, due to its modulatory role on monoaminergic systems and on mood. This study aims to investigate the effect of NOP receptor ligands in an animal model of mania induced by methylphenidate. To this aim, locomotor activity was assessed in an open field, in mice treated with methylphenidate (10 mg/kg, sc, 15 min). Valproate (300 mg / kg, ip, 30 min), standard treatment of mania, prevented methylphenidate-induced hyperlocomotion. The acute treatment with the antagonist of NOP receptor UFP-101 (1-10 nmol, icv, 5 min) per se did not affect the spontaneous locomotion of mice, but it was able of attenuating hyperlocomotion induced by methylphenidate. The acute treatment with N/OFQ (1 and 0.1 nmol, icv, 5 min) did not alter the distance moved, but when tested at a dose of 1 ηmol, N/OFQ slightly reduced methylphenidate-induced hiperlocomotion. In conclusion, the administration of UFP-101 and N/OFQ produced antimanic-like actions. Furthermore, these data suggest that the system of N/OFQ performs a complex modulation of voluntary movement, and consequently on dopaminergic neurotransmission.