60 resultados para Algoritmos e Programação

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The course of Algorithms and Programming reveals as real obstacle for many students during the computer courses. The students not familiar with new ways of thinking required by the courses as well as not having certain skills required for this, encounter difficulties that sometimes result in the repetition and dropout. Faced with this problem, that survey on the problems experienced by students was conducted as a way to understand the problem and to guide solutions in trying to solve or assuage the difficulties experienced by students. In this paper a methodology to be applied in a classroom based on the concepts of Meaningful Learning of David Ausubel was described. In addition to this theory, a tool developed at UFRN, named Takkou, was used with the intent to better motivate students in algorithms classes and to exercise logical reasoning. Finally a comparative evaluation of the suggested methodology and traditional methodology was carried out, and results were discussed

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective in the facility location problem with limited distances is to minimize the sum of distance functions from the facility to the customers, but with a limit on each distance, after which the corresponding function becomes constant. The problem has applications in situations where the service provided by the facility is insensitive after a given threshold distance (eg. fire station location). In this work, we propose a global optimization algorithm for the case in which there are lower and upper limits on the numbers of customers that can be served

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a set of intelligent algorithms with the purpose of correcting calibration errors in sensors and reducting the periodicity of their calibrations. Such algorithms were designed using Artificial Neural Networks due to its great capacity of learning, adaptation and function approximation. Two approaches willbe shown, the firstone uses Multilayer Perceptron Networks to approximate the many shapes of the calibration curve of a sensor which discalibrates in different time points. This approach requires the knowledge of the sensor s functioning time, but this information is not always available. To overcome this need, another approach using Recurrent Neural Networks was proposed. The Recurrent Neural Networks have a great capacity of learning the dynamics of a system to which it was trained, so they can learn the dynamics of a sensor s discalibration. Knowingthe sensor s functioning time or its discalibration dynamics, it is possible to determine how much a sensor is discalibrated and correct its measured value, providing then, a more exact measurement. The algorithms proposed in this work can be implemented in a Foundation Fieldbus industrial network environment, which has a good capacity of device programming through its function blocks, making it possible to have them applied to the measurement process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telecommunications play a fundamental role in the contemporary society, having as one of its main roles to give people the possibility to connect them and integrate them into society in which they operate and, therewith, accelerate development through knowledge. But as new technologies are introduced on the market, increases the demand for new products and services that depend on the infrastructure offered, making the problems of planning of telecommunication networks become increasingly large and complex. Many of these problems, however, can be formulated as combinatorial optimization models, and the use of heuristic algorithms can help solve these issues in the planning phase. This paper proposes the development of a Parallel Evolutionary Algorithm to be applied to telecommunications problem known in the literature as SONET Ring Assignment Problem SRAP. This problem is the class NP-hard and arises during the physical planning of a telecommunication network and consists of determining the connections between locations (customers), satisfying a series of constrains of the lowest possible cost. Experimental results illustrate the effectiveness of the Evolutionary Algorithm parallel, over other methods, to obtain solutions that are either optimal or very close to it

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior