3 resultados para Adjacency matrix,
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, a performance analysis of transmission schemes employing turbo trellis coded modulation. In general, the performance analysis of such schemes is guided by evaluating the error probability of these schemes. The exact evaluation of this probability is very complex and inefficient from the computational point of view, a widely used alternative is the use of union bound of error probability, because of its easy implementation and computational produce bounds that converge quickly. Since it is the union bound, it should use to expurge some elements of distance spectrum to obtain a tight bound. The main contribution of this work is that the listing proposal is carried out from the puncturing at the level of symbol rather than bit-level as in most works of literature. The main reason for using the symbol level puncturing lies in the fact that the enummerating function of the turbo scheme is obtained directly from complex sequences of signals through the trellis and not indirectly from the binary sequences that require further binary to complex mapping, as proposed by previous works. Thus, algorithms can be applied through matrix from the adjacency matrix, which is obtained by calculating the distances of the complex sequences of the trellis. This work also presents two matrix algorithms for state reduction and the evaluation of the transfer function of this. The results presented in comparisons of the bounds obtained using the proposed technique with some turbo codes of the literature corroborate the proposition of this paper that the expurgated bounds obtained are quite tight and matrix algorithms are easily implemented in any programming software language
Resumo:
We present a nestedness index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the sum of distances of the occupied elements in the adjacency matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the most simple case the distance of the matrix element ai,j is di,j = i+j, the Manhattan distance. A generic distance is obtained as di,j = (i¬ + j¬)1/¬. The nestedness índex is defined by = 1 − where is the temperature of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix that is defined as temperature one. We discuss an important feature of the problem: matrix occupancy. We address this question using a metric index ¬ that adjusts for matrix occupancy
Resumo:
The occurrence of problems related to the scattering and tangling phenomenon, such as the difficulty to do system maintenance, increasingly frequent. One way to solve this problem is related to the crosscutting concerns identification. To maximize its benefits, the identification must be performed from early stages of development process, but some works have reported that this has not been done in most of cases, making the system development susceptible to the errors incidence and prone to the refactoring later. This situation affects directly to the quality and cost of the system. PL-AOVgraph is a goal-oriented requirements modeling language which offers support to the relationships representation among requirements and provides separation of crosscutting concerns by crosscutting relationships representation. Therefore, this work presents a semi-automatic method to crosscutting concern identification in requirements specifications written in PL-AOVgraph. An adjacency matrix is used to identify the contributions relationships among the elements. The crosscutting concern identification is based in fan-out analysis of contribution relationships from the informations of adjacency matrix. When identified, the crosscutting relationships are created. And also, this method is implemented as a new module of ReqSys-MDD tool