8 resultados para Adaptative lighing
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms.
Resumo:
Several lines of evidence indicate that sleep is beneficial for learning, but there is no experimental evidence yet that the content of dreams is adaptive, i.e., that dreams help the dreamer to cope with challenges of the following day. Our aim here is to investigate the role of dreams in the acquisition of a complex cognitive task. We investigated electroencephalographic recordings and dream reports of adult subjects exposed to a computer game comprising perceptual, motor, spatial, emotional and higher-level cognitive aspects (Doom). Subjects slept two nights in the sleep laboratory, a completely dark room with a comfortable bed and controlled temperature. Electroencephalographic recordings with 28 channels were continuously performed throughout the experiment to identify episodes of rapid-eye-movement (REM) sleep. Behaviors were continuously recorded in audio and video with an infrared camera. Dream reports were collected upon forced awakening from late REM sleep, and again in the morning after spontaneous awakening. On day 1, subjects were habituated to the sleep laboratory, no computer game was played, and negative controls for gamerelated dream reports were collected. On day 2, subjects played the computer game before and after sleep. Each game session lasted for an hour, and sleep for 7-9 hours. 9 different measures of performance indicated significant improve overnight. 81% of the subjects experienced intrusion of elements of the game into their dreams, including potentially adaptative strategies (insights). There was a linear correlation between performance and dream intrusion as well as for game improval and quantity of reported dreaming. In the electrophysiological analysis we mapped the subjects brain activities in different stages (SWS 1, REM 1, SWS 2, REM 2, Game 1 and Game 2), and found a modest reverberation in motor areas related to the joystick control during the sleep. When separated by gender, we found a significant difference on female subjects in the channels that indicate motor learning. Analysis of dream reports showed that the amount of gamerelated elements in dreams correlated with performance gains according to an inverted-U function analogous to the Yerkes-Dodson law that governs the relationship between arousal and learning. The results indicate that dreaming is an adaptive behavior
Resumo:
In most cultures, dreams are believed to predict the future on occasion. Several neurophysiological studies indicate that the function of sleep and dreams is to consolidate and transform memories, in a cyclical process of creation, selection and generalization of conjectures about the reality. The aim of the research presented here was to investigate the possible adaptative role of anticipatory dreams. We sought to determine the relationship between dream and waking in a context in which the adaptive success of the individual was really at risk, in order to mobilize more strongly the oneiric activity. We used the entrance examination of the Federal University of Rio Grande do Norte (UFRN) as a significant waking event in which performance could be independently quantified. Through a partnership with UFRN, we contacted by e-mail 3000 candidates to the 2009 examination. In addition, 150 candidates were approached personally. Candidates who agreed to participate in the study (n = 94) completed questionnaires specific to the examination and were asked to describe their dreams during the examinaton period. The examination performance of each candidate in the entrance examination was provided by the UFRN to the researcher. A total of 45 participants reported dreams related to the examination. Our results show a positive correlation between performance on the examination and anticipatory dreams with the event, both in the comparison of performance on objective and discursive, and in final approval (in the group that not dreamed with the exam the rate of general approval, 22,45%, was similar to that found in the selection process as a whole, 22.19%, while for the group that dreamed with the examination that rate was 35.56%). The occurrence of anticipatory dreams reflectes increased concern during waking (psychobiological mobilization) related to the future event, as indicated by higher scores of fear and apprehension, and major changes in daily life, in patterns of mood and sleep, in the group that reported testrelated dreams. Furthermore, the data suggest a role of dreams in the determination of environmentally relevant behavior of the vigil, simulating possible scenarios of success (dream with approval) and failure (nightmares) to maximize the adaptive success of the individual
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
The Hiker Dice was a game recently proposed in a software designed by Mara Kuzmich and Leonardo Goldbarg. In the game a dice is responsible for building a trail on an n x m board. As the dice waits upon a cell on the board, it prints the side that touches the surface. The game shows the Hamiltonian Path Problem Simple Maximum Hiker Dice (Hidi-CHS) in trays Compact Nth , this problem is then characterized by looking for a Hamiltonian Path that maximize the sum of marked sides on the board. The research now related, models the problem through Graphs, and proposes two classes of solution algorithms. The first class, belonging to the exact algorithms, is formed by a backtracking algorithm planed with a return through logical rules and limiting the best found solution. The second class of algorithms is composed by metaheuristics type Evolutionary Computing, Local Ramdomized search and GRASP (Greed Randomized Adaptative Search). Three specific operators for the algorithms were created as follows: restructuring, recombination with two solutions and random greedy constructive.The exact algorithm was teste on 4x4 to 8x8 boards exhausting the possibility of higher computational treatment of cases due to the explosion in processing time. The heuristics algorithms were tested on 5x5 to 14x14 boards. According to the applied methodology for evaluation, the results acheived by the heuristics algorithms suggests a better performance for the GRASP algorithm
Desenvolvimento da célula base de microestruturas periódicas de compósitos sob otimização topológica
Resumo:
This thesis develops a new technique for composite microstructures projects by the Topology Optimization process, in order to maximize rigidity, making use of Deformation Energy Method and using a refining scheme h-adaptative to obtain a better defining the topological contours of the microstructure. This is done by distributing materials optimally in a region of pre-established project named as Cell Base. In this paper, the Finite Element Method is used to describe the field and for government equation solution. The mesh is refined iteratively refining so that the Finite Element Mesh is made on all the elements which represent solid materials, and all empty elements containing at least one node in a solid material region. The Finite Element Method chosen for the model is the linear triangular three nodes. As for the resolution of the nonlinear programming problem with constraints we were used Augmented Lagrangian method, and a minimization algorithm based on the direction of the Quasi-Newton type and Armijo-Wolfe conditions assisting in the lowering process. The Cell Base that represents the composite is found from the equivalence between a fictional material and a preescribe material, distributed optimally in the project area. The use of the strain energy method is justified for providing a lower computational cost due to a simpler formulation than traditional homogenization method. The results are presented prescription with change, in displacement with change, in volume restriction and from various initial values of relative densities.