6 resultados para 4-c]pyrrole
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing
Resumo:
Gene therapy is based on the transfer of exogenous genetic material into cells or tissues in order to correct, supplement or silencing a particular gene. To achieve this goal, efficient vehicles, viral or non-viral, should be developed. The aim of this work was to produce and evaluate a nanoemulsion system as a possible carrier for no-viral gene therapy able to load a plasmid model (pIRES2-EGFP). The nanoemulsion was produced by the sonication method, after been choose in a pseudo-ternary phase diagram build with 5 % of Captex 355®, 1.2 % of Tween 80®, 0.8 % of Span 80®, 0.16% of stearylamine and water (to 100 %). Measurements of droplet size, polydispersity index (PI), zeta potential, pH and conductivity, were performed to characterize the system. Results showed droplets smaller than 200 nm (PI < 0.2) and zeta potential > 30 mV. The formulation pH was near to 7.0 and conductivity was that expected to oil in water systems (70 to 90 μS/s) A scale up study, the stability of the system and the best sterilization method were also evaluated. We found that the system may be scaled up considering the time of sonication according to the volume produced, filtration was the best sterilization process and nanoemulsions were stable by 180 days at 4 ºC. Once developed, the complexation efficiency of the plasmid (pDNA) by the system was tested by agarose gel electrophoresis retardation assay.. The complexation efficiency increases when stearylamine was incorporated into aqueous phase (from 46 to 115 ng/μL); regarding a contact period (nanoemulsion / pDNA) of at least 2 hours in an ice bath, for complete lipoplex formation. The nanoemulsion showed low toxicity in MRC-5 cells at the usual transfection concentration, 81.49 % of survival was found. So, it can be concluded that a nanoemulsion in which a plasmid model was loaded was achieved. However, further studies concerning transfectation efficiency should be performed to confirm the system as non-viral gene carrier
Resumo:
The Brazilian Northeast is the most vulnerable region to climatic variability risks. For the Brazilian semi-arid is expected a reduction in the overall rates of precipitation and an increase in the number of dry days. These changes predicted by the IPCC (2007) will intensify the rainfall and droughts period that could promote the dominance of cyanobacteria, thus affecting the water quality of reservoirs, that are most used for water supply, in the semi-arid. The aim of this study was to evaluate the effects of increasing temperature combined with nutrient enrichment on the functional structure of the phytoplankton community of a mesotrophic reservoir in the semi-arid, in the worst case scenario of climate change predicted by the IPCC (2007). Two experiments were performed, one in a rainy season and another in the dry season. In the water sampled, nutrients (nitrate and orthophosphate) were added in different concentrations. The microcosms were submitted to two different temperatures, five-year average of air temperature in the reservoir (control) and 4°C above the control temperature (warming). The results of this study showed that warming and nutrient enrichment benefited mainly the functional groups of cyanobacteria. During the rainy season it was verified the increasing biomass of small functional groups of unicellular and opportunists algae such as F (colonial green algae with mucilage) and X1 (nanoplanktonic algae of eutrophic lake systems). It was also observed an increasing in total biomass, in the richness and diversity of the community. In the dry season experiment there was a greater contribution in the relative biomass of filamentous algae, with a replacement of the group S1 (non-filamentous cyanobacteria with heterocytes) for H1 (filamentous cyanobacteria with heterocytes) in nutrient- enriched treatments. Moreover, there was also loss in total biomass, species richness and diversity of the community. The effects of temperature and nutrients manipulation on phytoplankton community of reservoir Ministro João Alves provoked changes in species richness, the diversity of the community and its functional composition, being the dry period which showed the highest susceptibility to the increase in the contribution of potentially toxic cyanobacteria with heterocytes
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing
Resumo:
Funding was obtained from a Capes Fellowship to NM, grants CNPq Universal 481351/ 2011-6, CNPq PQ 306604/2012-4, FAPERN/CNPq Pronem 003/2011, Capes SticAmSud, and FAPESP/CEPID/Neuromat to S.R. CNPq Universal 473554/2011-9 and 480053/ 2013-8, CNPq PQ 308558/2011-1, FACEPE/CNPq-PRONEX APQ- 0203-1.05/08, FACEPE/CNPq-PRONEM APQ-1415-1.05/10, and CNAIPS to M.C