7 resultados para 0905 Civil Engineering

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is the numerical simulation of the mechanical performance of concrete affected by Alkali-Aggregate Reaction or RAA, reported by Stanton in 1940. The RAA has aroused attention in the context of Civil Engineering from the early 80, when they were reported consequences of his swelling effect in concrete structures, including cracking, failure and loss of serviceability. Despite the availability of experimental results the problem formulation still lacks refinement so that your solution remains doubtful. The numerical simulation is important resource for the assessment of damages in structures caused by the reaction, and their recoveries The tasks of support of this work were performed by means of the finite element approach, about orthotropic non-linear formulation, and, thermodynamic model of deformation by RAA. The results obtained revealed that the swelling effect of RAA induced decline of the mechanical performance of concrete by decreasing the margin of safety prior to the material failure. They showed that the temperature influences, exclusively, the kinetics of the reaction, so that the failure was the more precocious the higher the temperature of the solid mass of concrete

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present paper is to reorganize a discipline on technological physics so that the construction site of civil engineering becomes a natural environment of learning, providing the learner with the association between theory and practice as well as allowing the subject to process, in real time, information generated from his cognitive constructions and his contextualizations. Thus, a sequence of actions was taken into account: firstly, the programme was developed in the classroom, sharing with its contextualized information through experiments done under supervision by the learners in laboratories; secondly, the data which associate physics with construction were collected and, to do so, technical visits to construction sites were realized, providing the learner the association between the theory and the practice in a suitable site to the constructivist approach. As a result, the first discipline on physics of the Curso de Tecnólogos em Gerência de Obras de Edificações do CEFET/PB was re-structured in terms of syllabus, methodology, application and evaluation. In fact, this work deals with a dynamic process that gathers and gives emphasis to teaching, learning, technology, information, creativity, competence and abilities in a constructivist learning process and, as a consequence, having allowed institutional engagement

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the Psychology challenges, especially among the assessment and educational areas, is to understand and predict individual differences. In this context, this research aimed to verify the personality styles of students with high and low academic performance. The study included 236 university students from Petrolina-PE and Juazeiro-BA campus of the UNIVASF (Universidade Federal do Vale do São Francisco). They were uniformly distributed in four disciplines (medicine, psychology, administration and civil engineering), 10 students from each semester (five highest scores average students and five lowest scores average students) took place of the sample. The Millon Index Personality Styles (MIPS) was applied to analyze the personality/behavioral styles of the students. The MIPS is a 180 dichotomous (true/false) item scale. It was also developed and applied a questionnaire about the students characteristics and their academic information. Descriptive and central tendency statistics analysis (mean, standard deviation, frequency and percentage) were done to provide sample information. Then we performed a Mann-Whitney test in the overall sample and in each course and a factorial ANOVA. The results suggest that the university population is heterogeneous and there are significant differences (p <0.05) between the personality styles of students with high and low academic performance, when analyzing the overall sample and in courses of different areas of knowledge. Students of Medicine who have higher performance as personality styles prevalent the conformism and compliance, while students with lower income in this course, the styles are: innovation and discrepancy. Psychology students with higher income are more systematic and lower income students to score significantly on accommodation. The civil engineering students of the two groups differed only in personality style intuition, being such a style more characteristic of higher income students. Students of Management with higher yield stand out more in the style of the doubt and lower yields in these styles: individual, reflection and discrepancy. This study is correlational, but had an exploratory nature because there are no studies about this relationship in Brazil. Therefore, it provided a better understanding of the action characteristics of students with high and low academic performance. Further studies using the Big Five Personality Factors instruments are required because it is the most used model in understanding the influence of personality on students performance. This way, the relation between personality and academic performance will be better discussed. Otherwise, it will be possible to compare with the existing studies in the area

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)