144 resultados para Óxido de níquel

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several materials are currently under study for the CO2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO2 in mesoporous materials of different structures, such as MCM-48 and SBA- 15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10NiSBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g-1 ) and SBA-15 (0.914 mmol g-1 ) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g-1) and SBA-15 (9.97 mmol g-1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nickel alloys are widely used in the production of various materials, especially those that require mechanical strength characteristics associated with resistance to corrosion, for example, the stainless steel. Another use is the production of nickel alloy sintered from powder of metallic nickel. A promising alternative for the production of sintered components of nickel with an important reduction in costs of starting material is the use of mixtures of powders of Ni-NiO. This work aimed to study in situ reduction of NiO during sintering mixtures of Ni / NiO produced by powder metallurgy. The nickel mixtures have been processed by the technique of powder metallurgy and were pre-sintered in an oven under plasma reducing atmosphere of hydrogen. Mixtures Ni +15%NiO, Ni +25%NiO and Ni +35%NiO were studied and compared with samples consisting only of metallic Ni. Dilatometric tests were performed to study the sintering conditions of the mixtures. The consolidated material was analyzed for their microstructure and microhardness. Dilatometry graphs showed that the addition of nickel oxide in all compositions the active sintering the mixtures studied. In tests of microhardness indentations were made at different points of the sample surface. All compositions showed microhardness values close to the consolidated material from metallic nickel. However, sample containing Ni+35% NiO, showed a large dispersion of the values of microhardness tests performed at different points of the sample surface. Microstructural analysis of the material showed a higher concentration of voids and the presence of oxides in the waste composition of the mixtures Ni 35% NiO. The samples containing Ni+15%NiO showed microstructural characteristics and mechanical properties similar to metallic nickel consolidated under the same conditions of the compositions studied in this work and therefore had great potential for production of sintered nickel alloys

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of "Materials Chemistry" has been developing in recent years and there has been a great increase of interest in the synthesis and chemical and physical properties of new inorganic solids. New routes of synthesis and synthesis modified has been developed with the aim not only to optimize the processes in laboratory scale, but also on an industrial scale, and make them acceptable by current environmental legislation. The phenomenology of current solid state chemistry properties coupled with the high temperature superconductivity, ferromagnetism, porosity molecular and colors are evidence affected by the synthesis method, which in turn can influence the technological application of these materials. From this understanding, mixed oxides of nickel and zinc nanoparticulate were synthesized by microwave-assisted combustion route using three specific types of organic fuels employing the weight ratios 1:1/2 and 1:1 of cation metallic/fuel, in order to investigate the influence of such proportions to obtain the solids. The new fuels were chosen to replace, for example, urea or glycine that are the fuels most commonly preferred in this kind of synthesis. The powders without heat treatment were studied by Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD) and then calcined at 900°C. After heat treatment, the samples were characterized by analysis of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The modified synthesis route porposed was effective for obtaining powders. Both the alternative fuels chosen as the different weight ratios employed, influenced in the morphology and obtaining oxides

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the chemical method of synthesis of co-precipitation were produced ferrite powders manganese-cobalt equal stoichiometric formula Mn (1-x) Co (x) Fe2O4, for 0 < x < 1, first reagent element using as the hydroxide ammonium and second time using sodium hydroxide. The obtained powders were calcined at 400 ° C, 650 ° C, 900 ° C and 1150 ° C in a conventional oven type furnace with an air atmosphere for a period of 240 minutes. Other samples were calcined at a temperature of 900 ° C in a controlled atmosphere of argon, to evaluate the possible influence of the atmosphere on the final results the structure and morphology. The samples were also calcined in a microwave oven at 400 ° C and 650 ° C for a period of 45 minutes possible to evaluate the performance of this type of heat treatment furnace. It was successfully tested the ability of this group include isomorphic ferrite with the inclusion of nickel cations in order to evaluate the occurrence of disorder in the crystalline structures and their changes in magnetic characteristics.To identify the structural, morphological, chemical composition and proportions, as well as their magnetic characteristics were performed characterization tests of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), thermogravimetric (TG), vibrating sample magnetometry (MAV) and Mössbauer spectroscopy. These tests revealed the occurrence of distortion in the crystal lattice, changes in magnetic response, occurrence of nanosized particles and superparamagnetism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites