145 resultados para Óxido de zinco nanoestruturado


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work were synthesized matrix-based commercial white clay in its composition having large amounts of kaolinite and quartz, with a certain percentage of iron oxide for use as an adsorbent for hydrogen sulfide (H2S). To characterize the effect of initial matrix techniques were used to characterize XRD, FTIR, XRF and TG. The initial clay mineral matrix was placed in contact with 0.1 molar solutions of the salts of Co2+, Ni2+, Cr3+ and a solution 0.1 g / 100ml rhodamine B. During the synthesis process, the solutions were placed in contact with the initial matrix for a period of 48 hours in order to have ion exchange with the clay mineral. To check the amount of exchanged metals, we used the technique of X-ray Fluorescence (XRF). After synthesis was initiated the process of adsorption of H2S, where the arrays were placed in the reactor, then by passing a stream of hydrogen sulfide. The matrix along with the reactor was weighed before and after to measure the amount of gas adsorbed. Based on the gravimetric data the matrix which had the highest performance of the adsorption matrix was exchanged with Ni2+ ions, obtaining a result of 11.13 mg H2S / g matrix, then the matrix coated with rhodamine B which was reached 10.13 mg H2S / g matrix

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of salting and drying in the sun is used to preserve meat since the beginning of civilization. There is evidence that this preservation technique has arisen in Egypt, between 4,000 and 5,000 years ago. In our country, according to literature, was the first industrial product that gave the appearance of beef jerky, beef being produced, where about 70% to 75% of the muscle is composed of water, where it will be around 45% as a final product, according to the law in his article RIISPOA No. 432 provides that the jerky should contain no more than this amount of moisture in the muscular portion, or more than 15% of total ash with tolerance of up to 5% variation . Besides this parameter, proteins, lipids, ash, and minerals were analyzed in samples before and after the manufacturing process to know the content of these nutrients. Since these are considered important in product quality, thus the concentration in these samples, respectively, in the flesh Front (CD and CHD) before and after the manufacturing process for humidity were respectively 75.28% and 47.38% , the protein was 14.17 and 22.20 g / 100 g sample, 6.360 and 4.251 of lipids g/100g of the sample, and the ashes 0.974 9.144 g/100g sample, minerals like calcium and 4.074 30 , 06 ppm, sódio0, 055 and 5.401 g / L, sodium chloride, 0.139 and 13.74 g / L, potassium 237.5 and 166.8 ppm, 1.721 and 3.295 ppm iron, 0.143 and 0.135 ppm phosphorus, zinc and 4.690 6.905 ppm; magnésio14, 63 e13, 75 ppm manganese .017 e0, 007ppm, copper 0.057 and 0.039 ppm in the case of needle-type meat (CPA and CHPA), 68.04% and 44.17%, protein 13 , 72, and 24.42 g/100g of sample, 1.137 in the ash and 12.68 g / 100g of sample, and the minerals calcium 17.11 and 12.89 ppm; sódio0, 123 and 4.871 g / L, sodium chloride 0.312 and 12.39 g / L, potassium 305.3 and 182.1 ppm; ferro1, 817 and 1.513 ppm, 0.273 and 0.139 ppm phosphorus, zinc 6.305 and 4.783 ppm, 27.95 and 15.85 ppm magnesium, manganese and 0.025 0.011 ppm, 0.057 and 0.143 ppm copper and chromium 0.014 and 0.068 ppm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muitos mecanismos provocados pela ação humana vêm gerando um aumento na queima de combustíveis fósseis e processos químicos (produtos orgânicos, carvão, madeira, óleo diesel, gasolina e outros derivados de petróleo) e, consequentemente, há um aumento na emissão de CO2 na atmosfera. Uma das alternativas para a captura desse poluente é o processo de adsorção, o qual pode ajudar na redução do CO2. As hidrotalcitas ou hidróxidos duplos lamelares (HDL s) estão dentre esses materiais estudados, já que apresentam alta estabilidade e uma boa porosidade, tornando-se assim um promissor adsorvente de gases poluentes. Os HDL s formam um grupo de argilas do tipo aniônico que consiste em camadas positivamente carregadas de óxido de metal (ou hidróxido de metal) com intercamadas de ânions. Foi constatado que ânions que possuem duas cargas negativas, estabilizam muito mais que ânions monovalentes, sendo o carbonato o mais estável dos ânions divalentes. Neste trabalho, foi proposta uma modificação na síntese direta através da co-precipitação a pH constante utilizando sais de cátions divalentes (Mg2+) e trivalentes (Al3+) reportados na literatura. Durante a síntese dos HDL s retirou-se o carbonato, bem como, utilizou-se um copolímero como um template para o alargamento das lamelas. As amostras foram caracterizadas utilizando as técnicas de DRX, TG/DTG, FTIR, MEV/EDX, MET e adsorção e dessorção de N2. Os dados obtidos indicam que a estrutura, mesmo após a modificação, apresentou resultados condizentes com os encontrados na literatura. Dentre as várias aplicações dos HDL s foi realizado o estudo da adsorção do CO2. A capacidade de adsorção do material foi testada de acordo com o tempo de contato entre o adsorvente e o adsorbato, sendo esperado que os materiais tratados com template apresentassem um maior desempenho

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of polymer blends has been an alternative method in the search field of new materials for obtaining materials with improved properties. In this work blends of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) doped with titanium dioxide (TiO2) were studied. The PEO is a polymer semicrystalline structure varying between, 70 and 84% crystallinity, while the PMMA exhibits behavior amorphous in their structure. The use of TiO2 is related to corrosion-resistant of titanium as well as good heat transfer and other characteristics. The study of these polymer blends doped TiO2 gives the properties junction organic (polymer) and inorganic (oxide) which leads to modification of the properties of the resultant material. The blends were doped TiO2 (POE/PMMA/TiO2) in different proportions of the PMMA with the PEO and TiO2 fixed. The ratios were: 90/10/0,1; 85/15/0, 1; 80/20/0,1, 75/25/0,1 and 70/30/0,1. The resulting material was obtained in powder form and being characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The infrared spectra (IR) for the blends in different ratios showed a band at 1744 cm-1, characteristic of the C=O stretching, which increases in intensity with increasing PMMA composition, while in the spectrum of pure PEO this band is absent. This may suggest that the interaction is occurring between the polymers. In the micrographs of the blends also observed change in their surfaces with variation of the composition of PMMA, contributing to the change of the electrical properties of the material. The EIS data showed that the material exhibited conductivity of the order of 10-6 S.cm-1. The blend in the ratio B2(85/15/0, 1) showed better conductivity, σ = 1.56 x 10-6 S.cm-1. It was observed that the diffusion coefficient for the blends, B5(70/30/0, 1) was the largest, 1.07 x 10-6 m2.s-1. The XRD data showing that, with the variation in the composition of the PMMA blend crystallinity of the material is decreased reaching a minimum B3(80/20/0,1), and then increases again. Thermal analysis suggests that blends made from the material obtained can be applied at room temperature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study used the Thermogravimetry (TG) and molecular absorption spectroscopy in UV-visible region to determine the iron content in herbal medicinal ferrous sulfate used in the treatment of iron deficiency anemia. The samples were characterized by IR, UV, TG / DTG, DTA, DSC and XRD. The thermoanalytical techniques evaluated the thermal stability and physicochemical events and showed that the excipients interfere in the decomposition of the active ingredients. The results of thermogravimetry showed that the decomposition temperature of the active principle Fe2(SO4)3 (T = 602 °C) is higher as compared to samples of tablets (566 586 °C). In the DTA and DSC curves were observed exothermic and endo events for samples of medicines and active analysis. The infrared spectra identified key functional groups exist in all samples of active ingredients, excipients and compressed studied, such as symmetric and asymmetric stretching of OH, CH, S=O. The analysis by X-ray diffraction showed that all samples had crystallinity and the final residue showed peaks indicating the presence of silicon dioxide, titanium dioxide and talc that are excipients contained in pharmaceutical formulations in addition to iron oxide. The results obtained by TG to determine the iron content of the studied drugs showed a variance when compared with those obtained by theoretical and UV-visible, probably due to formation of a mixture of Fe2O3 and Fe2(SO4)3. In one tablet was obtained FE content of 15.7 % and 20.6 % for TG by UV-visible, the sample EF 2 was obtained as a percentage of 15.4 % and 21.0 % for TG by UV-visible . In the third SF samples were obtained a content of 16.1 % and 25.5 % in TG by UV-visible, and SF 4 in the percentage of TG was 16.7 % and 14.3 % UV-visible

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide