194 resultados para espectroscopia no infravermelho
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This thesis aimed to assess the increase in solubility of simvastatin (SINV) with solid dispersions using techniques such as kneading (MA), co-solvent evaporation (ES), melting carrier (FC) and spray dryer (SD). Soluplus (SOL), PEG 6000 (PEG), PVP K-30 (PVP) e sodium lauryl sulphate (LSS) were used as carriers. The solid dispersions containing PEG [PEG-2(SD)], Soluplus [SOL-2(MA)] and sodium lauryl sulphate [LSS-2(ES)] were presented with a greater increase in solubility (5.02, 5.60 and 5.43 times respectively); analyses by ANOVA between the three groups did not present significant difference (p<0.05). In the phase solubility study, the calculation of the Gibbs free energy (ΔG) revealed that the spontaneity of solubilisation of SINV occurred in the order SOL>PEG >PVP 75%>LSS, always 80%. The phase diagrams of PEG and LSS presented solubilization stoichiometry of type 1:1 (type AL). The diagrams with PVP and SOL tend to 1:2 stoichiometry (type AL + AP). The stability coefficients (Ks) of the phase diagrams revealed that the most stable reactions occurred with LSS and PVP. The solid dispersions were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD), near-infrared spectroscopy imaging (NIR-CI) and X-ray diffraction of the powder using the Topas software (PDRX-TOPAS). The solid dispersion PEG-2(SD) presented the greatest homogeneity and the lowest degree of crystallinity (18.2%). The accelerated stability study revealed that the solid dispersions are less stable than SINV, with PEG-2(SD) being the least stable, confirmed by FTIR and DSC. The analyses by PDRX-TOPAS revealed the amorphous character of the dispersions and the mechanism of increasing solubility
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
Many applications require that the plasma discharge is produced apart from the surface to be processed, thus preventing damage caused by bombardment and/or plasma radiation. In the post-discharge regime in various applications thermally sensitive materials can be used. In this work, active species produced by discharge and post-discharge hollow cathode were diagnosed by optical emission spectroscopy and mass spectrometry. The discharge was produced with the gases Ar and Ar - N2 gas flow ranging from 1 to 6 cm3/min and electric current between 150 to 600 mA. It was estimated that the ion density inside the hollow cathode, with 2 mm diameter ranged between 7.71 and 14.1 x 1015 cm-3. It was observed that the gas flow and the electric current changes the emission intensity of Ar and N2 species. The major ionic species detected by quadrupole mass spectrometry were Ar+ and N2+. The ratio of optical emission intensities of N2(1 +)/Ar(811 nm) was related to the partial pressure of N2 after the hollow cathode discharge at low pressure
Resumo:
Os polímeros biodegradáveis, como o poliácido láctico (PLA) apesar de consolidado nos campos farmacêuticos, médico e biomédico como biomateriais úteis para aplicações variadas, porém, depende da necessidade de funcionalizar a sua superfície estudando suas propriedades tais como hidrofilidade e hidrofobicidade favorecendo a interação do polímero com os materiais de aplicação farmacêutica, médica e biomédica. Este trabalho tem como objetivo produzir um material com características diferentes em cada um de seus lados, sendo um lado hidrofílico e o outro hidrofóbico. O substrato têxtil utilizado neste estudo foi um tecido de malha de composição 100% PLA que é biodegradável e biocompatível, o que possibilita sua aplicação na área biomédica. Para modificação superficial foi utilizado o tratamento a plasma de baixa pressão. A técnica de modificação de superfície por plasma foi escolhida por ser uma tecnologia limpa, anticorrosiva e não tóxica ao contrario de muitos processos químicos convencionais utilizados na indústria têxtil, além disso, não afeta as propriedades de massa do substrato. Neste estudo, um lado da superfície do substrato foi tratado com plasma oxigênio, argônio e nitrogênio, para o trabalho de melhoria da hidrofilidade da superfície e metano para a hidrofobicidade da amostra. A espectroscopia de emissão ótica (OEE) foi utilizada para fazer o diagnóstico das espécies do plasma durante o tratamento. Após o tratamento a plasma as amostras foram caracterizadas por medidas de ângulo de contato, microscopia eletrônica de varredura (MEV), Espectroscopia de fotoelétrons de raios-X (XPS), Infravermelho com Transformada de Fourier (FTIR) de reflexão total atenuada (ATR), medidas da área de espalhamento do líquido e arraste vertical. Onde foi caracterizado o aumento e diminuição da molhabilidade das amostras tratadas por plasma bem como as variáveis que contribuíram para tal efeito. O tratamento das amostras de PLA com O2 + CH4 apresenta comportamento hidrofílico no lado tratado com O2, apresentando aumento de rugosidade e grupos funcionais e no lado tratado com CH4, apresentando a formação de um filme polimérico formado sobre a superfície da amostra. O tratamento com N2 + CH4 apresenta comportamento hidrofóbico, porém com variações no fluxo do CH4 tem-se um controle da molhabilidade na superfície das amostras, podendo ir de hidrofóbico a hidrofílico, neste tratamento as amostras apresentaram pequenas diferenças de molhabilidade entre os lados tratados com plasma de N2 e com plasma de CH4
Resumo:
Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means
Resumo:
The main goal of this work was to produce nanosized ceramic materials of the family of the tungstates (tungstates of cerium and strontium), and test them for their catalytic activity in processes involving the transformation of methane (CH4). The methodology used for the synthesis of the ceramic powders involved the complexation combining EDTA-citrate. The materials characterization was performed using simple and differential thermogravimetry, x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy (EDS). The microstructure analysis was performed using the refinement by the Rietveld method, and the crystallite size and distribution of the materials was elucidate by the Scherrer and Williamson-Hall methods. The conditions of the synthesis process for the three envisaged materials (SrWO4, SrWO4 using tungsten oxide concentrate as raw material, and Ce2(WO4)3) were adjusted to obtain a single phase crystalline material. The catalytic tests were carried out in the presence of methane and synthetic air, which is composed of 21% O2 and 79% N2. The analysis of the conversion of the reaction was done with the aid of an fourier transform infrared device (FTIR). The analysis showed that, structurally, the SrWO4 produced using raw materials of high and poor purity (99% and 92%, respectively) are similar. The ideal parameters of calcination, in the tested range, are temperature of 1000 °C and time of calcination 5 hours. For the Ce2(WO4)3, the ideal calcination time and are temperature 15 hours and 1000°C, respectively. The Williamson-Hall method provided two different distributions for the crystallite size of each material, whose values ranged between the nanometer and micrometer scales. According to method of Scherrer, all materials produced were composed of nanometric crystallites. The analyses of transmission electron microscopy confirmed the results obtained from the Williamson- Hall method for the crystallite size. The EDS showed an atomic composition for the metals in the SrWO4 that was different of the theoretical composition. With respect to the catalytic tests, all materials were found to be catalytically active, but the reaction process should be further studied and optimized.
Resumo:
Polyurethanes are very versatile macromolecular materials that can be used in the form of powders, adhesives and elastomers. As a consequence, they constitute important subject for research as well as outstanding materials used in several manufacturing processes. In addition to the search for new polyurethanes, the kinetics control during its preparation is a very important topic, mainly if the polyurethane is obtained via bulk polymerization. The work in thesis was directed towards this subject, particularly the synthesis of polyurethanes based castor oil and isophorone diisocianate. As a first step castor oil characterized using the following analytical methods: iodine index, saponification index, refraction index, humidity content and infrared absorption spectroscopy (FTIR). As a second step, test specimens of these polyurethanes were obtained via bulk polymerization and were submitted to swelling experiments with different solvents. From these experiments, the Hildebrand parameter was determined for this material. Finally, bulk polymerization was carried out in a differential scanning calorimetry (DSC) equipment, using different heating rates, at two conditions: without catalyst and with dibutyltin dilaurate (DBTDL) as catalyst. The DSC curves were adjusted to a kinetic model, using the isoconversional method, indicating the autocatalytic effect characteristic of this class of polymerization reaction
Resumo:
Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion
Resumo:
Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed
Resumo:
Heterogeneous catalysts such as aluminophosphate and silicoaluminophosphate, molecular sieves with AEL of ALPO-11 and SAPO-11, were synthesized by the hydrothermal method with the following molar composition: 2.9 Al +3.2 P + 3.5 DIPA +32.5 H20 (ALPO-11); 2.9 Al +3.2 P + 0.5 Si + 3.5 DIPA +32.5 H20 (SAPO-11) starting from silica (only in the SAPO-11), pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 170ºC for a period of 48 hours under autogeneous pressure. The obtained materials were washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), thermo gravimetric differential thermal analysis (TG/DTA) and nitrogen adsorption (BET). The acidic properties were determined using adsorption of n-butylamine followed by programmed thermodessorption. This method revealed that ALPO-11 has weaker acid sites due to structural defects, while SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by the cracking of the n-hexane in a fixed bed continuous flow microrreator coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the organic template
Resumo:
This work deals with the application of X-Ray Absorption Spectroscopy on the study of the behavior of Cu2+ ions in inverse micelles. The formation of copper nanoparticles in water-in-oil microemulsions in pseudo-ternary systems of cetyl trimethylammonium Bromide (CTAB) surfactant, butanol co-surfactant, heptane as oil phase and aqueous solutions of CuSO4.5H2O, and NaBH4. The microemulsions were prepared with a fixed percentage (60 %) of oil phase and a variable water to tensoative proportion. It was observed an increase on Cu2+ reduction by the sodium borohydride in microemulsions with 13 % of aqueous phase, independent of the reaction time. For the microemulsions in which the aqueous phase is composed only by the CuSO4 solution, it was observed that the color of the solution depends on the water to surfactant ratio. These changes in color were attributed to a competition for the hidratation water between the polar head of the tensoative and Cu2+ ions with the eventual substitution of oxygen by bromine atoms in the first coordination shell of Cu2+ ions
Resumo:
In this work the organosilanes aminopropyltriethoxysilane, 3-mercaptopropyltryethoxisilane and n[-3-(trimetoxisilyl)propyl]ethylenetriamine, as well as tetraethylortosilicate (TEOS), were employed to produce, by sol-gel method, organofuncionalized silicon samples. The prepared samples were characterized by elementar analys by thermogravimetry and infrared spectroscopy. Those samples were employed to adsorb Cd2+, Pb2+, Ni2+ and Zn2+ from aqueous solutions (10, 20, 40, 60 and 80 mg L-1). In typical experiments, 50 mg of the organometrix was suspended in 20 mL of metal cation solutions at four different contact times: 30, 60, 90 and 120 minutes. The total amount of adsorbed cations were measured by atomic absorption spectrometry. To all investigated matrices, the following adsorption capacity was observed: Ni2+ > Zn2+ > Cd2+ > Pb2+. Such sequence is closely related with the cation radius, as well as the cation hardness
Resumo:
In this work we used chemometric tools to classify and quantify the protein content in samples of milk powder. We applied the NIR diffuse reflectance spectroscopy combined with multivariate techniques. First, we carried out an exploratory method of samples by principal component analysis (PCA), then the classification of independent modeling of class analogy (SIMCA). Thus it became possible to classify the samples that were grouped by similarities in their composition. Finally, the techniques of partial least squares regression (PLS) and principal components regression (PCR) allowed the quantification of protein content in samples of milk powder, compared with the Kjeldahl reference method. A total of 53 samples of milk powder sold in the metropolitan areas of Natal, Salvador and Rio de Janeiro were acquired for analysis, in which after pre-treatment data, there were four models, which were employed for classification and quantification of samples. The methods employed after being assessed and validated showed good performance, good accuracy and reliability of the results, showing that the NIR technique can be a non invasive technique, since it produces no waste and saves time in analyzing the samples