128 resultados para Espectroscopia de absorção atîmica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Were synthesized systems Ni0,5Zn0,5Fe2O4, i0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 and Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350, 500, 900 and 1100ºC/3h was accompanied by X-ray diffraction using the Rietveld refinement to better identify the structures formed. The materials were also analyzed by scanning electron microscopy, magnetic measurements and analysis of the reflectivity of the material. The samples calcined at different temperatures showed an increase of crystallinity with increasing calcination temperature, verifying that for some compositions at temperatures above 500°C precipitates of second phase such as hematite and CuO. The compositions of manganese present in the structure diffusion processes slower due to the ionic radius of manganese is greater than for other ions substitutes, a fact that delays the stabilization of spinel structure and promotes the precipitation of second phase. The compositions presented with copper precipitation CuO phase at a temperature of 900 and 1100ºC/3h This occurs according to the literature because the concentration of copper in the structure is greater than 0.25 mol%. The magnetic measurements revealed features of a soft ferrimagnetic material, resulting in better magnetic properties for the NiZn ferrite and NiCuZnMg at high temperatures. The reflectivity measurements showed greater absorption of electromagnetic radiation in the microwave band for the samples calcined at 1100ºC/3h, which has higher crystallite size and consequently the formation of multi-domain, increasing the magnetization of the material. The results of absorption agreed with the magnetic measurements, indicating among the ferrites studied, those of NiZn and NiCuZnMg as better absorbing the incident radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to consumer s safety the presence of pathogenic contaminants in foods must be monitored because they are responsible for foodborne outbreaks that depending on the level of contamination can ultimately cause the death of those who consume them. In industry is necessary that this identification be fast and profitable. This study shows the utility and application of near-infrared (NIR) transflectance spectroscopy as an alternative method for the identification and classification of Escherichia coli and Salmonella Enteritidis in commercial fruit pulp (pineapple). Principal Component Analysis (PCA), Independent Modeling of Class Analogy (SIMCA) and Discriminant Analysis Partial Least Squares (PLS-DA) were used in the analysis. It was not possible to obtain total separation between samples using PCA and SIMCA. The PLS-DA showed good performance in prediction capacity reaching 87.5% for E. coli and 88.3% for S. Enteritides, respectively. The best models were obtained for the PLS-DA with second derivative spectra treated with a sensitivity and specificity of 0.87 and 0.83, respectively. These results suggest that the NIR spectroscopy and PLS-DA can be used to discriminate and detect bacteria in the fruit pulp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the potential of near infrared spectroscopy (NIR) for forensic analysis of human hair samples in order to differentiate smokers from nonsmokers, using chemometric modeling as an analytical tool. We obtained a total of 19 hair samples, 9 smokers and 10 nonsmokers varying gender, hair color, age and duration of smoking, all collected directly from the head of the same great Natal-RN. From the NIR spectra obtained without any pretreatment of the samples was performed an exploratory multivariate chemical data by applying spectral pretreatments followed by principal component analysis (PCA). After chemometric modeling of the data was achieved without any experimental data beyond the NIR spectra, differentiate smokers from nonsmokers, by demonstrating the significant influence of tabacco on the chemical composition of hair as well as the potential of the methodology in forensic identification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of education is very rich and allows us to research in various aspects. The area of chemical education has been growing more and more, and an important aspect that has been researching this area is about the learning difficulties of students. The approach of the themes atomic structure and chemical bonds are developed in high school and have many problems that are often brought to higher education becoming an obstacle to the advancement of learning. It is necessary for these initial themes - the atomic structure and chemical bonds - are well understood by the student to the other contents of Chemistry will be understood more easily. This paper aims to describe, analyze errors and difficulties presented in the assessments of the discipline Atomic and Molecular Architecture, the students of the degree course in Chemistry - EAD, with respect to the contents of " Atomic Structure and Chemical Bonding ", by of the assessments made by the students and the Virtual Learning Environment (VLE), taking into account the activities , discussion forum and access to materials . AVA allows obtaining reports which were used to analyze regarding access / participation to assess their contribution to learning and its relation to the final result (pass / fail). It was observed that the most frequent errors in the assessments are related to the early part of the chemistry that is the understanding of atomic structure and evolution models. Students who accessed the extra material and participated in the activities and forums were students who achieved success in the course. Ie, the difficulties were emerging and the use of available teaching strategies, students could minimize such difficulties, making their performance in activities and assessments were better. Was also observed by attending the AVA, the discipline began with a large withdrawal from the page access as well as the frequency of face- evidence from observation in Listing presence of classroom assessments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have developed a way to grow Fe/MgO(100) monocrystals by magnetron sputtering DC. We investigated the growing in a temperature range among 100 oC and 300 oC. Structural and magneto-crystalline properties were studied by different experimental techniques. Thickness and surface roughness of the films were investigated by atomic force microscopy, while magneto-crystalline properties were investigated by magneto-optical Kerr effect and ferromagnetic resonance. Our results show that as we increase the deposition temperature, the magneto-crystalline anisotropy of the films also increases, following the equation of Avrami. The best temperature value to make a film is 300 oC. As the main result, we built a base of magnetoresistence devices and as an aplication, we present measurements of Fe/Cr/Fe trilayer coupling. In a second work we investigated the temperature dependence of the first three interlayer spacings of Ag(100) surface using low energy electron diffraction. A linear expansion model of crystal surface was used and the values of Debye temperatures of the first two layers and thermal expansion coefficient were determinated. A relaxation of 1% was found for Ag(100) surface and these results are matched with faces (110) and (111) of the silver. iv

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to analyze the biological response of titanium surfaces modified by plasma Ar + N2 + H2. Titanium disks grade II received different surface treatments Ar + N2 + H2 plasma, constituting seven groups including only polished samples used as standard. Before and after treatment the samples were evaluated in terms of topography, crystal structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of the sessile drop, respectively. Rich plasma (PRP) was applied to the surfaces modified in culture plates. Images obtained by scanning electron microscopy of the adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. We verified that the adition of H2 on plasma atmosphere resulted in more rough surfaces, with round tops. These surfaces, in contrast to that surfaces treated with high concentration of N2, are less propense to platelet aggregation and, consequently, to the formation of thrombus when applied in biomedical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was developed with the objective of proposing a simple, fast and versatile methodological routine using near-infrared spectroscopy (NIR) combined with multivariate analysis for the determination of ash content, moisture, protein and total lipids present in the gray shrimp (Litopenaeus vannamei ) which is conventionally performed gravimetrically after ashing at 550 ° C gravimetrically after drying at 105 ° C for the determination of moisture gravimetrically after a Soxhlet extraction using volumetric and after digestion and distillation Kjedhal respectively. Was first collected the spectra of 63 samples processed boiled shrimp Litopenaeus vannamei species. Then, the determinations by conventional standard methods were carried out. The spectra centered average underwent multiplicative scattering correction of light, smoothing Saviztky-Golay 15 points and first derivative, eliminated the noisy region, the working range was from 1100,36 to 2502,37 nm. Thus, the PLS models for predicting ash showed R 0,9471; 0,1017 and RMSEP RMSEC 0,1548; Moisture R was 0,9241; 2,5483 and RMSEP RMSEC 4,1979; R protein to 0,9201; 1,9391 and RMSEP RMSEC 2,7066; for lipids R 0,8801; 0,2827 and RMSEP RMSEC 0,2329 So that the results showed that the relative errors found between the reference method and the NIR were small and satisfactory. These results are an excellent indication that you can use the NIR to these analyzes, which is quite advantageous, since conventional techniques are time consuming, they spend a lot of reagents and involve a number of professionals, which requires a reasonable runtime while after the validation of the methodology execution using NIR reduces all this time to a few minutes, saving reagents, time and without waste generation, and that this is a non-destructive technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymer matrix composite materials are being used on a large scale in the most different industrial fields such as aerospace, automotive, oil, among others, since the industrial perspectives is currently working with materials which have a good mechanical performance at high service life and cost / benefit. Thus, the determination of the mechanical properties is indispensable for the characterization of waste resulting in greater expansion of this type of material. Thus, this work will be obtained three plates laminated with tereftálica polymeric matrix reinforced by a bidirectional woven E-glass and kevlar both industrially made, where the plates are manufactured by manual lamination process (hand lay-up), all laminates have five enhancement layers, the first hybrid laminate will consist of bidirectional woven E-glass fiber, kevlar fiber interspersed with layers, is formed by the second bidirectional woven kevlar fiber at the ends of the laminate (two layers), and in the center the glass fiber fabric (three layers), the third plate is composed of only the bidirectional woven E-glass fiber. Then were prepared specimens (CP) by standard, to determine the mechanical properties of tensile and bending in three points. After fabrication of the specimens, they were immersed in oil and seawater. After that, there was a comparison of the mechanical properties for the test condition in the dry state. Showing that there was a considerable increase in the properties studied because the effect of hybridization in laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.