125 resultados para óxido de cromo
Resumo:
In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low
Resumo:
The present work was to carry out a study on the adsorption of hydrogen sulfide (H2S) in arrays synthesized from a commercial clay mineral formed by a mixture of dolomite and quartz. To produce the ion exchange matrix were made using aqueous solutions of salts of cobalt II chloride hexahydrate (CoCl2.6H2O) II cadmium nitrate tetrahydrate (Cd (NO3)2.4H2O) I mercuric chloride (HgCl) nitrate and chromium III pentahydrate (Cr (NO3)3.5H2O). The arrays were subjected to hydrogen sulphide gas passage for one hour. To check the amount of gas adsorbed was used gravimetric process. The best result was in the adsorption matrix doped with cadmium and the solution retained for a longer time than the largest amount of H2S was the cobalt matrix. The matrix unmodified exhibited poor adsorption capacity. The characterization of the matrices were used XRD, XRF and IV. Mother with cadmium showed a high capacity in ion exchange, because the percentage of cadmium increased from 0% to 81.38% by replacing atoms of calcium and silicon which increased from 96.54% to 17.56% and 15, 72% to 0.32%, respectively, but also the best performance in adsorption of H2S adsorbing 11.89507 mg per gram of matrix
Resumo:
The study of polymer blends has been an alternative method in the search field of new materials for obtaining materials with improved properties. In this work blends of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) doped with titanium dioxide (TiO2) were studied. The PEO is a polymer semicrystalline structure varying between, 70 and 84% crystallinity, while the PMMA exhibits behavior amorphous in their structure. The use of TiO2 is related to corrosion-resistant of titanium as well as good heat transfer and other characteristics. The study of these polymer blends doped TiO2 gives the properties junction organic (polymer) and inorganic (oxide) which leads to modification of the properties of the resultant material. The blends were doped TiO2 (POE/PMMA/TiO2) in different proportions of the PMMA with the PEO and TiO2 fixed. The ratios were: 90/10/0,1; 85/15/0, 1; 80/20/0,1, 75/25/0,1 and 70/30/0,1. The resulting material was obtained in powder form and being characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The infrared spectra (IR) for the blends in different ratios showed a band at 1744 cm-1, characteristic of the C=O stretching, which increases in intensity with increasing PMMA composition, while in the spectrum of pure PEO this band is absent. This may suggest that the interaction is occurring between the polymers. In the micrographs of the blends also observed change in their surfaces with variation of the composition of PMMA, contributing to the change of the electrical properties of the material. The EIS data showed that the material exhibited conductivity of the order of 10-6 S.cm-1. The blend in the ratio B2(85/15/0, 1) showed better conductivity, σ = 1.56 x 10-6 S.cm-1. It was observed that the diffusion coefficient for the blends, B5(70/30/0, 1) was the largest, 1.07 x 10-6 m2.s-1. The XRD data showing that, with the variation in the composition of the PMMA blend crystallinity of the material is decreased reaching a minimum B3(80/20/0,1), and then increases again. Thermal analysis suggests that blends made from the material obtained can be applied at room temperature
Resumo:
One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.
Resumo:
Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming
Resumo:
This study used the Thermogravimetry (TG) and molecular absorption spectroscopy in UV-visible region to determine the iron content in herbal medicinal ferrous sulfate used in the treatment of iron deficiency anemia. The samples were characterized by IR, UV, TG / DTG, DTA, DSC and XRD. The thermoanalytical techniques evaluated the thermal stability and physicochemical events and showed that the excipients interfere in the decomposition of the active ingredients. The results of thermogravimetry showed that the decomposition temperature of the active principle Fe2(SO4)3 (T = 602 °C) is higher as compared to samples of tablets (566 586 °C). In the DTA and DSC curves were observed exothermic and endo events for samples of medicines and active analysis. The infrared spectra identified key functional groups exist in all samples of active ingredients, excipients and compressed studied, such as symmetric and asymmetric stretching of OH, CH, S=O. The analysis by X-ray diffraction showed that all samples had crystallinity and the final residue showed peaks indicating the presence of silicon dioxide, titanium dioxide and talc that are excipients contained in pharmaceutical formulations in addition to iron oxide. The results obtained by TG to determine the iron content of the studied drugs showed a variance when compared with those obtained by theoretical and UV-visible, probably due to formation of a mixture of Fe2O3 and Fe2(SO4)3. In one tablet was obtained FE content of 15.7 % and 20.6 % for TG by UV-visible, the sample EF 2 was obtained as a percentage of 15.4 % and 21.0 % for TG by UV-visible . In the third SF samples were obtained a content of 16.1 % and 25.5 % in TG by UV-visible, and SF 4 in the percentage of TG was 16.7 % and 14.3 % UV-visible
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
This study aimed to analyze the phytoremediation potential of Eichhornia crassipes in natural environments, optimize the extraction process of crude protein from plant tissue and, obtain and characterize this process in order to determine its viability of use instead of the protein sources of animal and/or human feed. For this, it has been determined in Apodi/Mossoró river water the concentration of ammonium ions, nitrite, nitrate, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cádmium, lead, and total chromium; It was determined in plant tissue of aquatic macrophytes of Eichhornia crassipes species present in Apodi/Mossoró River the moisture content, ash, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cadmium, lead, total chromium, total nitrogen and crude protein. It was also determined the translocation factor and bioaccumulation of all the quantified elements; It was developed and optimized the extraction procedure of crude protein based on the isoelectric method and a factorial design 24 with repetition; It was extracted and characterized the extract obtained by determining the moisture content, ash, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, cadmium, total nitrogen and crude protein. And finally, it was also characterized the protein extract using Thermogravimetric Analysis (TG), Derived Thermogravimetric (DTG), Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (FT-IR) and jelly-like electrophoresis of polyacrylamide (SDS -PAGE) to assess the their molecular weights/mass. Thus, from the results obtained for the translocation and bioaccumulation factors was found that the same can be used as phytoremediation agent in natural environments of all quantified elements. It was also found that the developed method of extraction and protein precipitation was satisfactory for the purpose of the work, which gave the best conditions of extraction and precipitation of proteins as: pH extraction equal to 13.0, extraction temperature equals 60 ° C, reaction time equals to 30 minutes, and pH precipitation equals to 4.0. As for the extract obtained, the total nitrogen and crude protein were quantified higher than those found in the plant, increasing the crude protein content approximately 116.88% in relation to the quantified contente in the vegetal tissue of macrophyte. The levels of nickel and cadmium were the unique that were found below the detection limit of used the equipment. The electrophoretic analysis allowed us to observe that the protein extract obtained is composed of low polypeptide chains by the molecular and phytochelatins, with 6 and 15 kDa bands. Analysis of TG, DTG, DSC and FT-IR showed similarities in protein content of the obtained extracts based on different collection points and 9 parts of the plant under study, as well as commercial soy protein and casein. Finally, based on all these findings, it was concluded that the obtained extract in this work can be used instead of the protein sources of animal feed should, before that, test its digestibility. As human supplementation, it is necessary to conduct more tests associated with the optimization process in the sense of removing undesirable components and constant monitoring of the water body and the raw material used
Resumo:
The aim of this study was to compare the misfit vertical, horizontal and passivity of zirconia and cobalt-chromium frameworks fabricated for CAD / CAM technology and conventional method of casting. Sixteen frameworks in one-piece, were obtained from a metallic matrix containing three Brånemark compatible implants with regular platform (Titamax Cortical Ti, Neodent). Eight frameworks were fabricated by CAD / CAM system (NeoShape, Neodent): four in zirconia (ZirCAD) and four cobalt-chromium (CoCrcad). Eight other frameworks were obtained by conventional casting method: four cobalt-chromium with UCLA abutment premachined Co-Cr (CoCrUCci) and four cobalt-chromium with UCLA abutment castable (CoCrUCc). The fit vertical, horizontal and passivity by one-screw test were measured using scanning electron microscopy with magnification of 250x. Initially evaluated the passivity by one-screw test and subsequently to assess the vertical and horizontal misfit, tightened all the screws with a torque of 20 Ncm. Mean, standard deviation, minimum and maximum values were calculated for each group. Measurements of horizontal misfit were transformed into cumulative frequency for categorization of the variable and the group later comparison groups. To evaluate the existence of quantitative differences between the groups tested for vertical misfit and passivity, we used the Kruskal-Wallis test. The Mann-Whitney test was used to compare group to group statistical differences (p <0.05). Were observed the respective mean and standard deviation for vertical misfit and passivity in micrometers: ZirCAD (5.9 ± 3.6, 107.2 ± 36), CoCrcad (1.2 ± 2.2, 107.5 ± 26 ), CoCrUCci (11.8 ± 9.8, 124.7 ± 74), CoCrUCc (12.9 ± 11.0, 108.8 ± 85). There were statistical differences in measures of vertical misfit (p = 0.000). The Mann-Whitney test revealed statistical differences (p <0.05) between all groups except between CoCrUCci and CoCrUCc (p = 0.619). No statistical difference was observed for the passivity. In relation to the horizontal misfit groups ZirCAD and CoCrcad did not show best values in relation to CoCrUCci and CoCrUCc. Based on the results it can be concluded that frameworks fabricated by CAD / CAM technology had better values of vertical fit than those manufactured by the casting method, nevertheless, the passivity was not influenced by manufacturing technique and material used. The horizontal fit obtained by frameworks manufactured by CAD / CAM was not superior to those manufactured by casting. A lower variability in vertical adjustment and passivity was observed when frameworks were fabricated by CAD / CAM technology
Resumo:
The objective of this research was to evaluate the passivity and strain induced in infrastructures screwed on abutments, made by CAD/CAM technology, and to compare these samples with parts manufactured by conventional casting. Using CAD/CAM technology, 4 samples were made from zirconia (Zircad) and 4 samples were manufactured from cobaltchrome (CoCrcad). The control groups were 4 specimens of cobalt-chrome, made by onepiece casting (CoCrci), for a total of 12 infrastructures. To evaluate the passivity, the infraestructures were installed on the abutments. One end was tightened and the vertical gap between the infrastructure and the prosthetic abutment was measured with scanning electron microscopy (250×). The mean strain in these infrastructures was analyzed via the photoelasticity test. A significant difference (p = 0.000) in passivity was observed between the control (CoCrci) and sample groups (CoCrcad and CoCrci). CoCrcad exhibited the best value of passivity (48.76 ± 13.45 μm) and CoCrci the worst (187.55 ± 103.63 μm), Zircad presented an intermediate value (103.81 ± 43.15 μm). When compared to the other groups, CoCrci showed the highest mean strain around the implants (17.19 ± 7.22 kPa). It was concluded that the zirconia infrastructure made by CAD / CAM showed a higher vertical marginal misfit than those made in cobalt-chromium alloy with the same methodology, however, the tension generated in the implants was similar. The CAD/CAM technology is more accurate for passivity and mean strain of infrastructure screwed on abutments than conventional manufacturing techniques
Resumo:
Fucans, sulfated polysaccharides extracted from brown algae and some echinoderms, have been extensively studied for its diverse biological activities and because of its interference with molecular mechanisms of cell to cell recognition, including leukocyte trafficking from blood vessels into sites of inflammation mediated by selectin, a family of adhesion molecules. In the present study, we examined structural features of a heterofucan extracted from brown algae Padina gymnospora and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolysis with the proteolytic enzyme maxatase. The presence of protein and uronic acid contamination was detected in the crude polysaccharide extract. Fractionation of the crude extract with growing concentrations of acetone produced five fractions with different concentrations of fucose, xylose, uronic acid, galactose, glucose and sulfate. The fraction precipitated with 1.5 volumes of acetone was characterized by infrared and nuclear magnetic resonance, through which can be observed the presence of sulfate groups in the C4 of -L-fucose. The anti-inflammatory action of this composite was assessed by a sodium thioglycollate-induced peritonitis assay and through nitric oxide production by the peritoneal macrophages using Griess reagent. Fraction F1.5 was efficient in reducing leukocyte influx into the peritoneal cavity when 10 mg/kg and 25mg/kg were used, resulting in a decrease of 56 and 39%, respectively. A decrease of nitric oxide production occurred when high concentrations of fucana were used. The cytotoxicity of the composite was also assessed using the reduction of 3-(4,5 dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT). Fraction F1.5 had no cytotoxicity when 500 μg/mL of the fraction was used. This study suggests the use of fraction F1.5 (heterofucan) as an anti-inflammatory