99 resultados para Vidro de Spins
Resumo:
Experiments were performed to study the effect of surface properties of a vertical channel heated by a source of thermal radiation to induce air flow through convection. Two channels (solar chimney prototype) were built with glass plates, forming a structure of truncated pyramidal geometry. We considered two surface finishes: transparent and opaque. Each stack was mounted on a base of thermal energy absorber with a central opening for passage of air, and subjected to heating by a radiant source comprises a bank of incandescent bulbs and were performed field tests. Thermocouples were fixed on the bases and on the walls of chimneys and then connected to a data acquisition system in computer. The air flow within the chimney, the speed and temperature were measured using a hot wire anemometer. Five experiments were performed for each stack in which convective flows were recorded with values ranging from 17 m³ / h and 22 m³ / h and air flow velocities ranging from 0.38 m / s and 0.56 m / s for the laboratory tests and air velocities between 0.6 m/s and 1.1m/s and convective airflows between 650 m³/h and 1150 m³/h for the field tests. The test data were compared to those obtained by semi-empirical equations, which are valid for air flow induced into channels and simulated data from 1st Thermodynamics equation. It was found that the chimney with transparent walls induced more intense convective flows than the chimney with matte finish. Based on the results obtained can be proposed for the implementation of prototype to exhaust fumes, mists, gases, vapors, mists and dusts in industrial environments, to help promote ventilation and air renewal in built environments and for drying materials, fruits and seeds
Resumo:
The utilization of synthetic fibers for plastic reinforcement is more and more frequent and this growing interest requires that their mechanic behavior under the most variable conditions of structural applications be known. The use of such materials in the open and exposed to the elements is one of them. In this case, it becomes extremely necessary to study their mechanical properties (strength, stiffness) and the mechanism of fracture by which the environment aging them out. In order to do that, the material must be submitted to hot steam and ultraviolet radiation exposure cycles, according to periods of time determined by the norms. This study proposal deals with the investigation of accelerated environmental aging in two laminated polymeric composites reinforced by hybrid woven made up of synthetic fibers. The configurations of the laminated composites are defined as: one laminate reinforced with hybrid woven of glass fibers/E and Kevlar fibers/49 (LHVK) and the other laminate is reinforced with hybrid tissue of glass fibers/E and of carbon fibers AS4 (LHVC). The woven are plane and bidirectional. Both laminates are impregnated with a thermofix resin called Derakane 470-300 Epoxy Vinyl-Ester and they form a total of four layers. The laminates were industrially manufactured and were made through the process of hand-lay-up. Comparative analyses were carried out between their mechanical properties by submitting specimen to uniaxial loading tractions and three-point flexion. The specimen were tested both from their original state, that is, without being environmentally aging out, and after environmental aging. This last state was reached by using the environmental aging chamber
Resumo:
Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it´s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites
Resumo:
Plasma DC hollow cathode has been used for film deposition by sputtering with release of neutral atoms from the cathode. The DC Plasma Ar-H2 hollow cathode currently used in the industry has proven to be effective in cleaning surfaces and thin film deposition when compared to argon plasma. When we wish to avoid the effects of ion bombardment on the substrate discharge, it uses the post-discharge region. Were generated by discharge plasma of argon and hydrogen hollow cathode deposition of thin films of titanium on glass substrate. The optical emission spectroscopy was used for the post-discharge diagnosis. The films formed were analyzed by mechanical profilometry technique. It was observed that in the spectrum of the excitation lines of argon occurred species. There are variations in the rate of deposition of titanium on the glass substrate for different process parameters such as deposition time, distance and discharge working gases. It was noted an increase in intensity of the lines of argon compared with the lines of titanium. Deposition with argon and hydrogen in glass sample observed a higher rate deposition of titanium as more closer the sample was in the discharge
Resumo:
Licuri is a palm tree from the semiarid regions of Bahia State, Brazil. It is an important source of food and feed in that region, since their nuts are commonly eaten by humans and used as maize substitute for poultry feeding. The aim of this dissertation is to study the feasibility for use of natural convection solar dryers and forced being compared with the traditional drying outdoors for drying coconut licuri Syagrus coronate. The study led to the construction of two prototype solar dryer for carrying out experiments proving: model Solar Drying System Direct Exposure to Natural Convection built with wood, has a drying chamber with direct cover transparent glass laminates 4 mm, using techniques for proper isolation of the drying chamber. The two prototypes were comparatively analyzed for performance and drying efficiency with traditional extractive use by the community. Were evaluated the variables: time and drying rates and quality of the final samples of coconut licuri. The fruits were harvested and brought the town of Ouricuri, in the city of Caldeirão Grande, BA for the experiments comparing the three methods of drying was used a standard load of 4.0 kg The quantitative analysis for the result of the drying rate was found in 74% yield and 44% for natural and forced convection respectively compared with the traditional drying. These drying rates represent variation 3-5 times lower. Drying using forced convection licuri showed better quality, was found in a reddish pulp, representing the quantities that were kept of the nutrient beta carotene, and not notice the flavor change from the previous system, the final cost of construction of this system were higher . The prototypes built competitive advantage and had testified fully to resolve the technical difficulties previously encountered in the production of products made of coconut licuri. Allowing add value and increase their potential use for the fruit extractive communities of semi-arid region of Bahia
Resumo:
Fillers are often added in composites to enhance performance and/or to reduce cost. Fiberglass pipes must meet performance requirements and industrial sand is frequently added for the pipe to be cost competitive. The sand is added to increase pipe wall thickness, thus increase pipe stiffness. The main goal of the present work is to conduct an experimental investigation between pipes fabricated with and without de addition of sand, to be used in the petroleum industry. Pipes were built using E-glass fibers, polyester resin and siliceous sand. The fabrication process used hand lay up and filament winding and was divided in two different parts: the liner and the structural wall. All tested pipes had the same liner, but different structural wall composition, which is the layer where siliceous sand may be added or not. The comparative investigation was developed considering the results of longitudinal tensile tests, hoop tensile tests, hydrostatic pressure leak tests and parallel-plate loading stiffness tests. SEM was used to analyze if the sand caused any damage to the glass fibers, during the fabrication process, because of the fiber-sand contact. The procedure was also used to verify the composite conditions after the hydrostatic pressure leak test. The results proved that the addition of siliceous sand reduced the leak pressure in about 17 %. In the other hand, this loss in pressure was compensated by a stiffness increment of more than 380 %. MEV analyses show that it is possible to find damage on the fiber-sand contact, but on a very small amount. On most cases, the contact occurs without damage evidences. In summary, the addition of sand filler represented a 27.8 % of cost reduction, when compared to a pipe designed with glass fiber and resin only. This cost reduction combined to the good mechanical tests results make siliceous sand filler suitable for fiberglass pressure pipes
Resumo:
The production of biodiesel has become an important and attractive process for the production of alternative fuels. This work presents a study of the biodiesel production from coconut oil (Cocos nucifera L.), by two routes: direct transesterification using NaOH as catalyst and esterification (with H2SO4) followed by basic transesterification. The reactor was built in pirex with 1L of capacity and was equipped with a jacket coupled with a thermostatic bath to temperature control, a mecanical stirring is also present in the reactor. The analysis of oil composition was carried out by gas chromatography and esters compounds were identified. The parameters of molar ratio oil/alcohol, reaction time and temperature were studied and their influence on the conversion products was evaluated using experimental planning (23). The molar ratio was the most significant variable by the statistical planning analysis. Conversions up to 85.3% where achived in the esterification/transesterification, with molar ratio 1:6 at 60ºC and 90 minutes of reaction. For the direct transesterification, route conversions up 87.4% eas obtained using 1:6.5 molar ratio at 80ºC and 60 minutes of reaction. The Coconut oil was characterized by their physic chemical properties and key constituents of the oil. The lauric acid was the main constituint and the oil showed high acidity. The biodiesel produced was characterized by its main physicochemical properties, indicating satisfactory results when compared to standard values of National Petroleum Agency. The work was supplemented with a preliminary assessment of the reaction kinetic
Resumo:
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
Resumo:
This work study of solar distillation feasibility in effluent of petroleum industry: produced water, making possible your reuse for irrigation of oleaginous cultures or fodder crops or in steam generation, as well the transport phenomena involved. The methodology for development of this project was to characterize the effluent to be treated and to accomplish physical and chemical analysis in the distilled, to build distillation equipment, concomitant operation of both equipments and implementation of data processing and economical evaluation. The methodology used for all parameters is outlined in APHA (1998) and sampling of the type compound. The feeding of distillation equipment was performed with treated effluent from UTPF of Guamaré. The temperature was monitored throughout the distillers and during the time of operation. The distillers feed occur, as a rule, for sifon. The distillers were operated by a period of 17 months between July 2007 and February 2009, in which 40 experiments were performed. The radiation and temperature datas were acquired in the INPE s site and the temperature inside of the distillers was registered by DATALOGGER Novus. The rates of condensation (mL / min) were determined by measuring of the flow in a graduate test tube of 10 mL and a chronometer. We used two simple solar effect distillers of passive type with different angles in coverage: 20 ° and 45 °. The results obtained in this study and the relevant discussions are divided into six topics: sample characterization and quality of distilled; construction of distillers; operation (data, temperature profile), climatic aspects, treatment of data and economical analysis. Results obtained can be inferred that: the energy loss by the adoption of vessel glass was not significant, however, complicates the logistics of maintenance the equipment on a large scale. In the other hand, the surface of the tub with a glass shield on the equipment deterioration, both devices showed similar performance, so there is not justified for use of equipment 450. With regard to the climatological study it was verified that the Natal city presents monthly medium radiation varying in a range between 350 and 600 W/m2, and medium of wind speed of 5 m / s. The medium humidity is around 70% and rainfall is very small. The regime of the system is transient and although it has been treated as a stationary system shows that the model accurately represents the distillers system's 20 degrees. The quality of the distilled with regard to the parameters evaluated in this study is consistent with the Class 3 waters of CONAMA (Resolution 357). Therefore we can conclude that solar distillation has viability for treat oilfield produced water when considered the technical and environmental aspects, although it is not economically viable
Resumo:
The effect of finite size on the magnetic properties of ferromagnetic particles systems is a recurrent subject. One of the aspects wide investigated is the superparamagnetic limit where the temperature destroys the magnetic order of ferromagnetic small particles. Above the block temperature the thermal value of the magnetic moment of the particle vanishes, due to thermal fluctuations. The value of the blocking temperature diminishes when the size of the particle is reduced, reflecting the reduction of the anisotropy energy barrier between the uniform states along the uniaxial axis. The increasing demand for high density magnetic media has recently attracted great research interest in periodic arrangements of nanometric ferromagnetics particles, approach in the superparamagnetic limit. An interesting conjecture is the possibility of stabilization of the magnetic order of small ferromagnetic particles (F) by interface coupling with antiferromagnetic (AF) substrate. These F/AF systems may also help to elucidate some details of the effect of exchange bias, because the effect of interface roughness and the paper of domain walls, either in the substrate or the particle, are significantly reduced. We investigate the magnetic phases of small ferromagnetic particles on a antiferromagnetic substrate. We use a self-consistent local field method, incorporating the interface field and the dipole interaction between the spins of the ferromagnetic particle. Our results indicate that increasing the area of the interface favors the formation of the uniform state. Howere above a critical height value appears a state non-uniform is formed where the spins of in the particle s free surface are rotated with respect to the interface spins direction. We discuss the impact of the competition between the dipolar and interface field on the magnetic charge, that controls the field of flux leakage of the particle, and on the format of the hysteresis curves. Our results indicate that the liquid magnetic charge is not a monotonically increasing function of the height of the particle. The exchange bias may display anomalous features, induced for the dipolar field of the spins near the F/AF interface
Resumo:
The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found
Resumo:
In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
In this work we investigate the effect of a BCS-type pairing term for free spinless fermions, with a propensity to form a condensate of pairs in a 1+1 dimension. Using the of bosonization technique we explore the possible condition of existence of quasiparticles in a superconducting state. Although there is no spontaneous breaking of chiral symmetry the propagator of one-particle fermion is massive and, in fact, resembles the one-particle Green s function of conventional quasiparticles
Resumo:
Neste trabalho investigamos aspectos da propagação de danos em sistemas cooperativos, descritos por modelos de variáveis discretas (spins), mutuamente interagentes, distribuídas nos sítios de uma rede regular. Os seguintes casos foram examinados: (i) A influência do tipo de atualização (paralela ou sequencial) das configurações microscópicas, durante o processo de simulação computacional de Monte Carlo, no modelo de Ising em uma rede triangular. Observamos que a atualização sequencial produz uma transição de fase dinâmica (Caótica- Congelada) a uma temperatura TD ≈TC (Temperatura de Curie), para acoplamentos ferromagnéticos (TC=3.6409J/Kb) e antiferromagnéticos (TC=0). A atualização paralela, que neste caso é incapaz de diferenciar os dois tipos de acoplamentos, leva a uma transição em TD ≠TC; (ii) Um estudo do modelo de Ising na rede quadrada, com diluição temperada de sítios, mostrou que a técnica de propagação de danos é um eficiente método para o cálculo da fronteira crítica e da dimensão fractal do aglomerado percolante, já que os resultados obtidos (apesar de um esforço computacional relativamente modesto), são comparáveis àqueles resultantes da aplicação de outros métodos analíticos e/ou computacionais de alto empenho; (iii) Finalmente, apresentamos resultados analíticos que mostram como certas combinações especiais de danos podem ser utilizadas para o cálculo de grandezas termodinâmicas (parâmetros de ordem, funções de correlação e susceptibilidades) do modelo Nα x Nβ, o qual contém como casos particulares alguns dos modelos mais estudados em Mecânica Estatística (Ising, Potts, Ashkin Teller e Cúbico)