98 resultados para REAÇÕES FOTONUCLEARES
Resumo:
Perovskites oxides win importance by its properties and commercials applications, they have a high thermal stability, have conductive properties, electrical, catalytic, electro catalytic, optical and magnetic, and are thermally stable. Because of these properties, are being widely studied as carriers of oxygen in the process of power generation with CO2 capture. In this work, the base carrier system La1-xMexNiO3 (Me = Ca and Sr) were synthesized by the method via the combustion reaction assisted by microwave. were synthesized from the combustion reaction method by microwave process. This method control the synthesi`s conditions to obtain materials with specific characteristics. The carriers calcined at 800 ° C/2h were analyzed by thermal analysis (TG-DTA), to verify its thermal stability, X-ray diffraction (XRD) to verify the phase formation, with subsequent refinement by the Rietveld method, to quantify the percentage of phases formed, the surface area by BET method was determined, scanning electron microscopy (SEM) was obtained to evaluate the material morphology and temperature programmed reduction (TPR) was done to observe the metallic phase of the nickel. After all proposed characterization and analysis of their results can be inferred to these oxides, key features so that they can be applied as carriers for combustion reactions in chemical cycles. The final products showed perovskite-type structures K2NiF4 (main) and ABO3.
Resumo:
It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides
Resumo:
The oxidative desulfurization process (ODS) of a commercial diesel fuel was performed under mild conditions in the presence of catalysts based on vanadium or manganese, supported on alumina, clays (commercial, natural and pillared) and zeolites (NaX, NaY, beta, mordenite and ZSM-5). The catalysts were synthesized by wet impregnation and characterized by X-ray diffraction, textural analysis by N2 adsorption and scanning electron microscopy. The dibenzothiophene (DBT) was used as sulfur compound in catalytic evaluation. The reactions were performed using acetonitrile as solvent and the hydrogen peroxide as oxidant at 55°C. The reaction products were analized by gas chromatography (GC-FID). In the studied conditions, the process was efficient due to the DBT was converted to its corresponding sulfone. Both DBT and corresponding sulfone were extracted by the solvent. Removals and oxidations up to 100% of sulfur compound were achieved. The catalysts supported on ZSM-5 zeolite showed are more effective for oxidation reaction of sulfur compound, presenting the best results. It was observed for oxidation reaction, that vanadium catalysts were more effective and manganese catalysts showed best results for removal of sulfur compounds
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
Resumo:
The present work aims to study the theoretical level of some processes employed in the refining of petroleum fractions and tertiary recovery of this fluid. In the third chapter, we investigate a method of hydrogenation of oil fractions by QTAIM (Quantum Theory of Atoms in Molecules) and thermodynamic parameters. The study of hydrogenation reactions, and the stability of the products formed, is directly related to product improvement in the petrochemical refining. In the fourth chapter, we study the theoretical level of intermolecular interactions that occur in the process of tertiary oil recovery, or competitive interactions involving molecules of non-ionic surfactants, oil and quartz rock where oil is accumulated. Calculations were developed using the semiempirical PM3 method (Parametric Model 3). We studied a set of ten non-ionic surfactants, natural and synthetic origin. The study of rock-surfactant interactions was performed on the surface of the quartz (001) completely hydroxylated. Results were obtained energetic and geometric orientations of various surfactants on quartz. QTAIM was obtained through the analysis of the electron density of interactions, and thus, providing details about the formation of hydrogen bonds and hydrogen-hydrogen systems studied. The results show that the adsorption of ethoxylated surfactants in the rock surface occurs through the hydrogen bonding of the type CH---O, and surfactants derivatives of polyols occurs by OH---O bonds. For structures adsorption studied, the large distance of the surfactant to the surface together with the low values of charge density, indicate that there is a very low interaction, characterizing physical adsorption in all surfactants studied. We demonstrated that surfactants with polar group comprising oxyethylene units, showed the lowest adsorption onto the surface of quartz, unlike the derivatives of polyols
Resumo:
The area of Education in Chemistry in Brazil has appeared over 30 years and its growth has been accelerated by the need of comprehension of the processes of teaching and learning in chemistry. Many researches, in this area, has among its investigation objects the teaching tools like teaching materials and the learning processes of students in high school and basic education, but when dealing with higher levels of education, they are seldom portrayed. This study aimed to investigate the General Chemistry textbooks with respect to approach the concept of energy; know the main ideas of graduate students in Chemistry on the relation of the concept of energy and chemical transformations; finally, developing a cicle of studies with the proposition of an approach wich inter-relate the concept of energy and its implications in the teaching-learning process of a chemical transformation. To do so, we used as instruments a questionnaire, press conference, conceptual map and experimental activities. All activities of the study cicle were videotaped and recorded, transcribed and the results organized in tables. For the activities of the study cicle texts that have been developed and inter-relating concepts of chemistry and energy, which in turn gave theoretical support to the activities in the cycle. In the analysis it was used as a theoretical content the analysis of Laurence Bardin. The results revealed that the analysis of the book might be perceived that not always the concept of energy is used in order to generate the abstract thought of chemical transformations, but that the main macroscopic thermodynamic variables are present in the explanation of these transformations. During the study cicle, were studied two chemical reactions: the first one, made possible to approach the macroscopic dimension to quantify the concept of energy and the second one, made possible to demonstrate the macro and microscopic dimension of the concept of energy during a chemical transformation. In all reactions proposed, students used, in most of the times, as explanations, only macroscopic observations of the reactions under study and failed to realize that the concept of energy can be used to explain macro and microscopic chemical transformation. As a final action of the study cicle, students requested further discussion, to clarify the link between the concept of energy and the meanings constructed in the process of studying the reactions. This is done through an oral explanation, during the cycle, and registered in this thesis and attempts to show the interrelationship existing conceptual
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.
Resumo:
Catalytic processes are widely present in everyday life. This results in large number of studies seeking materials that may combine the low cost catalytic efficiency. Based on this assumption, the clays have long been used as catalysts, with its huge availability, diversity and possibility of improving their properties from structural changes, primarily responsible for this great use. Among the natural clays, vermiculite due to their characteristic properties (high cation exchange capacity and expansion), is suitable for various applications including as catalysts and catalyst supports. In this work, the acid leaching of clay vermiculite was performed, coming from Santa Luzia-PB, with nitric acid (2, 3 and 4 mol / L) and subsequent calcination of the materials obtained. The materials were named as Vx/400, where x is the acid concentration employed and 400 used in calcination temperature. The effectiveness of changes made was determined by XRD techniques, FT-IR, EDS, TG/DTG, nitrogen physisorption and DTP of n-butylamine. Acid leaching has improved some properties of the clay - specific area and acidity - but the control of the acid concentration used is of vital importance, since the highest concentration caused the partial destruction of vermiculite entailing a decline in their properties. For analysis of the catalytic activity of the modified clay was made a comparative study with the SBA -15 mesoporous materials, synthesized via hydrothermal method, using the pyrolysis of low density polyethylene (LDPE). The results showed that the acid plays a fundamental role in the conversion of the polymer into smaller molecules, the material V3/400 was more selective for the source monomer (ethylene) due to their increased acidity, which promotes more breaks bonds in the polymeric chain, while materials and V0/400 V2/400, lower acidity, showed higher selectivity to light hydrocarbons, the range of fuel (41.96 and 41.23%, respectively), due to less breakage and secondary condensation reactions chains; already V4/400 SBA-15/550 and resulted in lower percentages of light hydrocarbons and the partial destruction of the structure and low acidity, respectively, responsible for the inefficiency of materials
Resumo:
This work reports the synthesis of zeolites with different compositions (pure silica, Si/Ti and Si/Al), via hydroxide and fluoride medium using the cation 1-butyl-3- methylimidazolium as structure directing agent. Initially, the cation was synthesized in chloride form and used for the synthesis in hydroxide medium. An anion-exchange (Cl- for OH-) was required for the synthesis in fluoride medium. Different reactants were used for the formation of gels synthesis, resulting in the crystallization of MFI and TON phases, the latter predominant in many compositions. The cation and synthesized zeolites obtained were characterized by different techniques such as NMR, TG/DTG, XRD, SEM, N2 adsorption and desorption, DRS and EPMA. Besides characterizing the cation and zeolites, the mother liquor of hydroxide synthesis was characterized and it was possible to observe a modification of the cation in the synthesis conditions employed. The materials synthesized in this work can be applied in catalytic reactions and adsorption
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Resumo:
Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming
Resumo:
This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR