83 resultados para Curva
Resumo:
Universidade Estadual do Rio Grande do Norte
Resumo:
In the present study we compute the atmospheric parameters (Teff , log g and vmic, [Fe/H]) and chemical abundance of 16 ions (Fe I, Fe II, O I, Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Rb I, Zr I, Ba II, La II and Cr I) for 16 solar-like stars with masses between 0:8 and 1:2 Mfi aproximatedly, including 10 planet-host stars detected by the CoRoT Space Mission. For this study, we use data from the ESO public archive: (i) high resolution spectra (R 47000) from the UVES spectrograph on the VLT/UT2-ESO (for 7 stars, covering the wavelength range 3450-4515 Å and 5500-9400 Å) and (ii) high resolution spectra from HARPS spectrograph on the La Silla-ESO 3.60 m telescope (for 9 stars, covering the wavelength range 4200-6865 Å). Our spectral analysis is based on MARCS models of atmosphere and Turbospectrum spectroscopic tools. On the base of the computed parameters, the referred abundances appears to follow the same behavior of the solar curve abundances. Further, one observes a signifficant correlation between the abundance ratio [m/Fe] and condensation temperature (Tc) of refractory elements (Tc > 900 K). The behavior of the projected rotational velocity (v sin i) versus the computed abundances [m/Fe] is also analyzed, presenting no clear trends. This study oers additional constraints to trace the evolutive history of solar-like stars with planets, including the search for chemical dierences between stars with and without transit planets and anomalies in the studied abundances
Resumo:
In this experimental study sintetic samples of Jacobsites (MnFe2O4) were synthesized by the Pechini method and calcined within ambient atmosphere and afterwards in the vacuum from 400 to 700ºC, the range of calcination temperatures. The X-Ray Diffraction (XRD) and the Scanning Electronic Microscopy (SEM) analysis have shown that the samples treated at 400ºC temperature are composed by a simple type of spinel phase, with a crystallite size of 8:8nm for the sample calcined in ambient atmosphere and 20; 1nm for the sample treated in the vacuum, showing that the cristallite average size can be manipulated by the atmosphere control. The hysteresis loops for the sample calcined at 400ºC in ambient atmosphere reveal features of superparamagnetic behavior with magnetization 29:3emu=g at the maximum field of 1:2T. The sample calcined in 400oC under vacuum show magnetization = 67emu=g at the maximum field of 1:5T. The sample treated at 500oC, under ambient atmosphere, has shown besides the spinel phase, secondary phases of hematite (Fe2O3) and bixbyite (FeMnO3). The hysteresis loops demonstrate a sharp drop of the magnetization compared to the previous sample. The analysis has revealed that for the samples treated in higher temperatures (600ºC and 700ºC) its observed the absence of the spinel phase and the maintenance of the bixbyite and hematite. The hysteresis loops for those samples in accordance to the external magnetic field are straight lines crossing the origin, consistent with the antiferromagnetic behavior of the phases.The Mössbauer espectroscopy show to the sample calcined at 400ºC within ambiente atmosphere two sextet and one doublet. The two sextets are assigned to the hyperfine fields related to the magnetic deployment in the nuclei of Fe3+ ions, at the tetraedric and octaedric sites. The doublet is assigned to superparamagnetic behavior of the particles with smaller diameter than dc . Now the sample calcined at 400ºC under vacuum only show two sextet
Resumo:
The Galaxy open clusters have a wide variety of physical properties that make them valuable laboratories for studies of stellar and chemical evolution of the Galaxy. In order to better settle these properties we investigate the abundances of a large number of chemical elements in a sample of 27 evolved stars of the open cluster M67 with different evolutionary stages (turn-off, subgiant and giant stars). For such a study we used high-resolution spectra (R 47 000) and high S/N obtained with UVES+FLAMES at VLT/UT2, covering the wavelength interval 4200-10 600 Å. Our spectral analysis is based on the MARCS models of atmosphere and Turbospectrum spectroscopic tool. The oxygen abundances were determined from the [O I] line at 6300 Å. In addition, we have also computed abundances of Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Zr I, La II and Cr I. The abundances investigated in this work, combined with their stellar parameters, offers an opportunity to determine the level of mixing and convective dilution of evolved stars in M67. Based on the obtained parameters, the abundances of these seem to follow a similar trend to the curve of solar abundances. Additionally, following strategies of other studies have investigated the relative abundances as a function of effective temperature and metallicity, where it was possible to observe an abundance of Na, Al and Si to the stars in the field of giants. A large dispersion from star to star, is observed in the ratios [X / Fe] for the Co, Zr and La, and the absence of Zr and La, in the stars of the turn-off. Comparisons made between our results and other studies in the literature show that values of abundances are in agreement and close to the limits of the errors
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
We report a theoretical investigation of the magnetic phases and hysteresis of exchange biased ferromagnetic (F) nanoelements for three di erent systems: exchange biased nanoparticles, exchange biased narrow ferromagnetic stripes and exchange biased thin ferromagnetic lms. In all cases the focus is on the new e ects produced by suitable patterns of the exchange energy coupling the ferromagnetic nanoelement with a large anisotropy antiferromagnetic (AF) substrate. We investigate the hysteresis of iron and permalloy nanoparticles with a square basis, with lateral dimensions between 45 nm and 120 nm and thickness between 12 nm and 21 nm. Interface bias is aimed at producing large domains in thin lms. Our results show that, contrary to intuition, the interface exchange coupling may generate vortex states along the hysteresis loop. Also, the threshold value of the interface eld strength for vortex nucleation is smaller for iron nanoelements. We investigate the nucleation and depinning of an array of domain walls pinned at interface defects of a vicinal stripe/AF bilayer. The interface exchange eld displays a periodic pattern corresponding to the topology of the AF vicinal substrate. The vicinal AF substrate consists of a sequence of terraces, each with spins from one AF subalattice, alternating one another. As a result the interface eld of neighboring terraces point in opposite direction, leading to the nucleation of a sequence of domain walls in the ferromagnetic stripe. We investigated iron an permalloy micrometric stripes, with width ranging from 100 nm and 300 nm and thickness of 5 nm. We focused in domain wall sequences with same chirality and alternate chirality. We have found that for 100nm terraces the same chiraility sequence is more stable, requiring a larger value of the external eld for depinning. The third system consists of an iron lm with a thickness of 5 nm, exchange coupled to an AF substrate with a periodic distribution of islands where the AF spins have the opposite direction of the spins in the background. This corresponds to a two-sublattice noncompensated AF plane (such as the surface of a (100) FeF2 lm), with monolayer-height islands containing spins of one sublattice on a surface containing spins of the opposite sublattice. The interface eld acting in the ferromagnetic spins over the islands points in the opposite direction of that in the spins over the background. This a model system for the investigation of interface roughness e ects. We have studied the coercicivity an exchange bias hysteresis shift as a function of the distance between the islands and the degree of interface roughness. We have found a relevant reduction of coercivity for nearly compensated interfaces. Also the e ective hysteresis shift is not proportional to the liquid moment of the AF plane. We also developed an analytical model which reproduces qualitatively the results of numerical simulations
Resumo:
The low level laser therapy (LLLT) has shown to be effective in promoting the proliferation of different cells in vitro, including keratinocytes, osteoblasts, endothelial cells and stem cells. It has been speculated that the biostimulatory effect of LLLT could cause undesirable enhancement of tumor growth in neoplastic diseases, since the malignant cells are more susceptible to proliferative stimuli. Within this context, this study evaluated the effect of LLLT on epidermoid carcinoma of the tongue cell line (SCC25) proliferation and invasion. Cultured cells were irradiated with an InGaAIP diode laser, 660nm, 30mW using two energy densities (0.5J/cm2 and 1.0J/cm2). Proliferative activity was assessed through trypan blue staining method and through cell cycle analysis using flow cytometry. The invasive potential was measured through cell invasion assay using matrigel. Cyclin D1, E-cadherin, -catenin and MMP-9 expressions were analyzed by immunofluorescence and flow cytometry and related to the investigated biological activities. Proliferation curve demonstrated that SCC25 irradiated with 1.0J/cm2 had the highest proliferative rate when compared to the control group and the group irradiated with 0.5J/cm2 (p<0.05). LLLT affected cell cycle distribution and energy density of 1.0 J/cm2 promoted a higher percentage of cells in S/G2/M phases, with statistically significant differences at 24h interval (p<0.05). LLLT, mainly with 1.0J/cm2, revealed significantly higher potential for invasion and influenced the expression of cyclin D1, E-cadherin, -catenin and MMP-9, promoting the malignant phenotype. In conclusion, our results indicate that LLLT has an important stimulatory effect on proliferation and invasion of SCC25 cells, likely due to altered expression of proteins associated with these processes
Resumo:
In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss