110 resultados para Conversão de polarização


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The improper disposal of nitrogen in receiving water courses causes problems such as toxicity to living beings through the consumption of oxygen to meet the nitrogen demand, eutrophication and nitrate contamination of aquifers. For this reason it is often necessary to be carried out complementary treatment of wastewater to eliminate or reduce the concentration of this compound in the wastewater. The objective of this study is to evaluate the biological removal of nitrogen compounds using submerged aerated and anoxic filters as post-treatment of an anaerobic system, with low cost and innovative technology, which in previous studies has shown high removal efficiency of organic matter and great potential biological nitrogen compounds removal. The simple design with perforated hoses for air distribution and filling with plastic parts proved to be very efficient in relation to organic matter removal and nitrification. The system presented, in the best stage, efficiency in converting ammonia to nitrate by 71%, and produced a final effluent concentration below 10 mg / L of NH3-N. In addition, carbon concentration was removed by 77%, producing final effluent with 24 mg/L COD. However, denitrification in anoxic filter was not effective even with the addition of an external carbon source. There was a reduction of up to 56% of nitrogen caused by the process of simultaneous nitrification and denitrification (SND). The high voids space presented by this type of support material coupled with direct aeration of the sludge, allows the respiration of biomass retained between the endogenous phase, increased cell retention time and sludge retention capacity, producing a final effluent with turbidity less than 5 UT and total suspended solids around 5.0 mg/L

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the optical-phonon spectra in periodic and quasiperiodic (Fibonacci type) superlattices made up from III-V nitride materials (GaN and AlN) intercalated by a dielectric material (silica - SiO2). Due to the misalignments between the silica and the GaN, AlN layers that can lead to threading dislocation of densities as high as 1010 cm−1, and a significant lattice mismatch (_ 14%), the phonon dynamics is described by a coupled elastic and electromagnetic equations beyond the continuum dielectric model, stressing the importance of the piezoelectric polarization field in a strained condition. We use a transfer-matrix treatment to simplify the algebra, which would be otherwise quite complicated, allowing a neat analytical expressions for the phonon dispersion relation. Furthermore, a quantitative analysis of the localization and magnitude of the allowed band widths in the optical phonon s spectra, as well as their scale law are presented and discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a theoretical study of the propagation of electromagnetic waves in multilayer structures called Photonic Crystals. For this purpose, we investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive and negative refractive index materials in the terahertz (THz) region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. We use a theoretical model based on the formalism of transfer matrix in order to simplify the algebra involved in obtaining the dispersion relation of phonon-polaritons (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws. We calculate the emittance spectrum of the electromagnetic radiation, in THZ frequency, normally and obliquely incident (s and p polarized modes) on a one-dimensional multilayer structure composed of positive and negative refractive index materials organized periodically and quasi-periodically. We model the negative refractive index material by a effective medium whose electric permittivity is characterized by a phonon-polariton frequency dependent dielectric function, while for the magnetic permeability we have a Drude like frequency-dependent function. Similarity to the one-dimensional photonic crystal, this layered effective medium, called polaritonic Crystals, allow us the control of the electromagnetic propagation, generating regions named polaritonic bandgap. The emittance spectra are determined by means of a well known theoretical model based on Kirchoff s second law, together with a transfer matrix formalism. Our results shows that the omnidirectional band gaps will appear in the THz regime, in a well defined interval, that are independent of polarization in periodic case as well as in quasiperiodic case

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy (MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently in association with hippocampal sclerosis. Unfortunately, not all patients benefit from pharmacological treatment (drug-resistant patients), and therefore become candidates for surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure standardized by anatomical markers. However, part of patients still present seizure after the procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to know the epileptic human brain in order to create new tools for auxiliary an individualized surgery procedure. The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic (ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients with MTLE. The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface of temporal lobe in three moments: without any cortical resection, after anterior temporal lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N = 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University of São Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB routines and validated manually. The events rate (number of events/channels) in each recording time was correlated with seizure control outcome. In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed that seizure-free outcome patients had more HFO rate before the resection than non-seizure free, however do not differentiate in relation of frequency, morphology and distribution of IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%, Spec = 70%). We observed the same for the difference of the rate of pre and post-resection (IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec = 80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false positives. To conclude, we observed that the IS and HFO can be found in intra-operative ECoG record, despite the anesthesia and the short time of record. The possibility to classify the patients before any cortical resection suggest that ECoG can be important to decide the use of adjuvant pharmacological treatment or to change for tailored resection procedure. The mechanism responsible for this effect is still unknown, thus more studies are necessary to clarify the processes related to it

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the significant share of food costs of poultry production, it is necessary to use strategies and techniques to maximize the utilization and biological value of the components of the diets, keeping constant or improving animal performance. In this context, seeking partial substitution of corn and the best use of the constituents of the diet, the present study aimed to evaluate the effects of inclusion of cashew pomace dehydrated (BCD) and enzyme complex (EC) in the diet on performance and quality eggs of Japanese quails. A total of 200 Japanese quail at 87 days of age, in 25 cages in a completely randomized design in a factorial 2 x 2 + 1 (two levels of cashew bagasse x two levels of enzymes) + control diet without cashew bagasse totaling five treatments with five replicates of eight birds each repetition. The experiment lasted 84 days, divided into four periods of 21 days. The treatments consisted of T1-Ration Control, T2-ration with 7.5% without EC BCD, T3-ration with 7.5% BCD with CE, T4-Ration with 15% BCD without EC and T5-Feed with 15% of BCD with EC. The enzyme complex (EC) is used fermentation product of Aspergillus niger, and cashew bagasse was obtained from the juice industry, passed through drying and crushing process for producing the bran. The performance and egg quality of quails, and performance variables: feed intake (FI), feed conversion ratio per dozen eggs (CAKDZ) and egg mass (CAMO), egg production (OP% bird / day), average egg weight (PMO) and egg mass (MO), and variables were egg quality, specific gravity (SG), Haugh unit (HU), yolk index, and the relationships between components eggs (%albumen,% yolk and %shell). Data were analyzed with the Statistical SAEG (2007). The 7.5 and 15% of cashew bagasse, independent of the enzyme complex decreased feed intake and improved the average egg weight. The two levels with the addition of EC showed significant differences for feed conversion by egg mass. The 7.5 with the addition of enzyme complex obtained the lowest average feed conversion per dozen eggs. The inclusion of up to 15% of cashew bagasse dehydrated with or without addition of enzyme complex in the diet of Japanese quails not interfere in the internal and external quality of eggs. The 7.5 and 15% BCD without added enzyme complex gave better means for specific gravity. Under conditions in which the experiment was conducted, it can be stated that the inclusion of up to 15% of cashew bagasse dehydrated with added enzyme complex feeding quail is economically viable, with the level of 7.5% with the addition of complex enzyme presented the best economic indices

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interesting development in surfactants science and technology is their application as corrosion inhibitors, since they act as protective films over anodic and cathodic surfaces. This work aims to investigate the efficiency of saponified coconut oil (SCO) as corrosion inhibitor and of microemulsified system (SCO + butanol + kerosene oil + distilled water), in saline medium, using an adapted instrumented cell, via techniques involving linear polarization resistance (LPR) and mass loss coupons (MLC). For this, curves of efficiency versus SCO concentration (ranging between 0 and 75 ppm) have been constructed. According to the obtained results, the following efficiency levels were reached with OCS: 98% at a 75 ppm concentration via the LPR method and 95% at 75 ppm via the MLC method. The microemulsified system, for a concentration of 15 ppm of SCO, obtained maximum inhibition of 97% (LPR) and 93% (MLC). These data indicate that it is possible to optimize the use of SCO in similar applications. Previous works have demonstrated that maximal efficiencies below 90% are attained, typically 65% as free molecules and 77% in microemulsified medium, via the LPR method in a different type of cell. Therefore, it can be concluded that the adapted instrumented cell (in those used methods) showed to be an important tool in this kind of study and the SCO was shown effective in the inhibition of the metal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibitors in solution are utilized to minimize processes from corrosion in steel. Of the present dissertation was evaluated the efficiency by inhibition from the surfactant saponified coconut oil (OCS) in the carbon steel 1020 through in linear polarization electrochemistry technique, well as, studied the process from adsorption through from the isotherms from Langmuir, Frumkin and Temkin. The corrosion current was determined through in Tafel extrapolation from the curves in the polarization, and then, was calculated the efficiency in the inhibitor to each concentration and temperature. Were studied four concentrations (12,5 ppm, 25 ppm, 50 ppm, and 75 ppm) in the inhibitor OCS and one in the NaCl salt (10.000 ppm) in six temperatures (301 K, 308 K, 313 K, 318 K, 323 K, and 328 K) in triplicate. By the results obtained observed that the technique applied can evaluated with rapidity and efficiency corrosion inhibitors. In relation to the isotherms, the than best appropriated was the in Langmuir and in the concentrations studied, the that obtained the best efficiency was the concentration of 75 ppm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]