65 resultados para controladores de caudal
Resumo:
PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The robustness and performance of the Variable Structure Adaptive Pole Placement Controller are evaluated in this work, where this controller is applied to control a synchronous generator connected to an infinite bus. The evaluation of the robustness of this controller will be accomplished through simulations, where the control algorithm was subjected to adverse conditions, such as: disturbances, parametric variations and unmodeled dynamic. It was also made a comparison of this control strategy with another one, using classic controllers. In the simulations, it is used a coupled model of the synchronous generator which variables have a high degree of coupling, in other words, if there is a change in the input variables of the generator, it will change all outputs simultaneously. The simulation results show which control strategy performs better and is more robust to disturbances, parametric variations and unmodeled dynamics for the control of Synchronous Generator
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
This research aims at developing a variable structure adaptive backstepping controller (VS-ABC) by using state observers for SISO (Single Input Single Output), linear and time invariant systems with relative degree one. Therefore, the lters were replaced by a Luenberger Adaptive Observer and the control algorithm uses switching laws. The presented simulations compare the controller performance, considering when the state variables are estimated by an observer, with the case that the variables are available for measurement. Even with numerous performance advantages, adaptive backstepping controllers still have very complex algorithms, especially when the system state variables are not measured, since the use of lters on the plant input and output is not something trivial. As an attempt to make the controller design more intuitive, an adaptive observer as an alternative to commonly used K lters can be used. Furthermore, since the states variables are considered known, the controller has a reduction on the dependence of the unknown plant parameters on the design. Also, switching laws could be used in the controller instead of the traditional integral adaptive laws because they improve the system transient performance and increase the robustness against external disturbances in the plant input