106 resultados para Resistência à flexão
Resumo:
This study focuses on a methodology of unchained action by Father Sabino Gentili in Mãe Luiza, suburb of Natal-RN, which has enhanced social participation in what Castells calls project identity. The perception of collective actions, focused on the development of subjects from the perspective of Alain Touraine occurs continuously in a popular neighborhood, whose history marked by conflict mainly related to the resistance in the remaining living space. It is argued that there was an appropriation of resistance identity, which was already present in the community of Mãe Luiza, in order to channel it to create a project identity, through an implicit methodology that has been identified as Pedagogy of Consensus, based on Paulo Freire s concepts of dialogue and participation. Therefore, by means of qualitative research, using tools such as semi-structured interviews and documented sources, we tried to describe the intent of the action of a social actor and the political and educational strategies that motivate the collective action aiming a social change, observing the elements present in this action that allowed the continuity of organizational and participating processes through the dynamics of Mãe Luiza s neighborhood
Resumo:
Monoculture of mind This idea, presented by Vandana Shiva, reflects the phase that we have experienced in the world: a notion of civilization that, since many decades, characterized by a technocratic big trend, has been shown as dominant and hegemonic. Based on a thinking and acting, felling and whishing standardization, this wave ends implying in what can be called of humanity‟s crisis at civilizational process. Destruction of simpler and more harmonious lifestyles with nature, human relations increasingly distant, values embrittlement, as respect, goodness and love, are some consequences of that behavioral homogenization. In the other hand, appears an archipelago of cultural and cognitive resistance against this devastating wave. Edgar Morin and Ceiça Almeida refer to this archipelago as a South Thought , what is not just a geographic question. Report, therefore, to some places, peoples, island that keep ancient costumes and knowledge, orally transmitted, for instance, from elders to younger, or vice versa, in an almost constant flow. Particular ways of experiencing the world around themselves, the men, animals, plants, rocks, or even not alive beings, masters or enchanted, spiritual guides. Next to a logic of sensitive, as Claude Levi-Strauss proposes, this reading, which is a more attentive, observer and wiser posture of surroundings, is based on touching, smelling, eating, seeing, and, I would add, felling. In light of this, I try to expatiate about certain experiences that I had the pleasure of living in some of these islands of resistance. Talks, perceptions, observations, sensations Stories, prose, poetries, music, photos, graphics Whatever could serve to portray even a bit of the reflections and forms to understand (ourselves) and produce knowledge, such as from a formation/Education to life, was well used at this ethnographic work. Space to the subjectivity and emotions I had, have, and will have a lot Everything for the dear reader may fell traveling around the world of tradition, resistance
Resumo:
A laserterapia de baixa potência (LBP) tem demonstrado recentemente ser capaz de aumentar a resistência à fadiga, bem como potencializar o desempenho neuromuscular através de seus efeitos metabólicos e fotoquímicos. Estudos anteriores mostraram que o LBP reduziu o estresse oxidativo do exercício, promovendo um retardo da fadiga muscular e minimizando seus efeitos deletérios. O objetivo desse estudo foi avaliar se a aplicação do LBP antes de um protocolo de fadiga teria efeito sobre o desempenho neuromuscular nas variáveis eletromiográficas e dinamométricas do músculo sóleo em sujeitos saudáveis. Esta pesquisa caracterizou-se como um estudo experimental do tipo ensaio clínico controlado, randomizado e cego, no qual participaram 60 voluntários de ambos os sexos, com faixa etária entre 18 e 28 anos e fisicamente ativos, segundo o questionário internacional para a prática de atividade física (IPAQ). Os sujeitos foram alocados randomicamente em três grupos: Controle (G1), Placebo (G2) e Laser (G3) e todos os voluntários foram submetidos a uma avaliação inicial (AV-1), um Protocolo de Fadiga e uma avaliação final (AV-2), compostas por contrações isocinéticas para flexão plantar a uma velocidade de 90°/s. Os resultados encontrados nesse estudo mostraram que não houve diferença estatística entre os três grupos da pesquisa nas variáveis eletromiográficas de RMS e Frequência Mediana, contudo, em relação à dinamometria, o grupo que recebeu a aplicação do Laser obteve um índice de fadiga significativamente menor (p=0,04) quando comparado aos grupos Controle e Placebo. Além disso, a aplicação do laser pré-exercício também resultou em um aumento nas variáveis de desempenho potência e trabalho. Com isso, pode-se concluir que o LBP foi capaz de melhorar o desempenho do sóleo em sujeitos saudáveis, justificado pelo aumento da resistência à fadiga
Resumo:
This works aims at investigating the effects of adding waste from RCBP-polyester button manufacturing to Portland cement concrete, particularly regarding its consistency and mechanic strength. The RCBP used came from a button factory located in Parnamirim, RN, Brazil. The waste was added to the concrete on different ratios: 5 %, 10 %, 15 % and 20 % of the total cement mass. A sample of concrete without the RCBP was used as reference, 1:1,33:2,45:0,50. For the mechanic strength test four samples were tested with different ages (3, 7 and 28 days old) and mixtures. Furthermore, a Slump Test was also conducted in order to verify the concrete s consistency. A tendency to a reduction in the compression resistance was noticed for all samples. For the samples with 5 % and 10 %, there was also an increase in the traction resistance during inflexion, regarding the reference concrete. In the microstructural analysis, the RBCP was observed to show an irregular and porous surface, thus explaining the consistency decrease
Resumo:
With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state
Resumo:
The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied
Resumo:
Usually masonry structures has low tension strength, hence the design to flexural efforts can results in high reinforcement ratio, specification of high unit and prism strength, structural members with larger section dimensions and modification in structural arrangement to be possible to use masonry members. The main objective of this study is to evaluate the stiffness, the efforts distribution and the effect of horizontal elements (girders) and vertical elements (counterforts) distribution on the behavior of masonry blocks retaining walls. For this purpose, numerical modeling was performed on typical retaining wall arrangements by varying the amount and placement of horizontal and vertical elements, beyond includes elements simulating the reactions of the soil supporting the foundation of the wall. The numerical modeling also include the macro modeling strategy in which the units, mortar and grout are discretized by a standard volume that represents the masonry elastic behavior. Also, numerical model results were compared with those ones of simplified models usually adopted in bending design of masonry elements. The results show horizontal displacements, principal and shear stresses distribution, and bending moments diagrams. From the analysis it was concluded that quantity and manner of distribution of the girders are both important factors to the panel flexural behavior, the inclusion of the foundation changed significantly the behavior of the wall, especially the horizontal displacements, and has been proposed a new way of considering the flanges section of the counterforts
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
The study of the physical and mechanic properties is an analysis of unquestioned importance on the production of the ceramic materials. In the region of the Recôncavo Baiano, there are ceramic and small brick factories, that still use rudimentary techniques, where the necessity of characterization of raw materials is denounced by the quality of the final product. The present work has for objective to study the behavior of the clay proceeding from the region of the Recôncavo, between the cities of Candeias and Camaçari/Ba, with addition of 5, 10 and 15% by weight of brick scraps, trying to optimize the physic and mechanical properties of the final product, aiming a better possibility of being manufactured, mechanic resistance, low linear retraction and water absorption. The brick scraps and the clay were characterized by FRX, DRX, TG, ATD and the granulometric analysis. Samples for testing where prepared by uniaxial pressing at 25Mpa, in 60x20x5mm size. The evaluated technological properties were: linear retraction, water absorption, apparent porosity and flexural strength. The samples were burned in electric oven in the temperatures of 850º, 950º and 1050ºC and compared its mechanical properties and the gresification. With addition of 15% by weight of brick scraps and burning at 900º-1000ºC the samples showed properties superior to that clay
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
Resumo:
The tricalcium phosphate ceramics has been widely investigated in the last years due its bioresorbable behavior. The limiting factor of the application of these materials as temporary implants is its low strength resistance. The tricalcium phosphate presents an allotropic transformation β→α around 1250 ºC that degrades its resistance. Some studies have been developed in order to densify this material at this temperature range. The objective of this work is to study the influence of the addition of magnesium oxide (MgO) in the sintering of β-TCP. The processing route was uniaxial hot pressing and its objective was to obtain dense samples. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements, analyzed of the microstructure. The addition of magnesium oxide doesn t cause an improvement of the mechanical strength in relation to material without additive.
Resumo:
The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes