110 resultados para MESTRADO EM SISTEMAS DE COMUNICAÇÃO MULTIMÉDIA
Resumo:
Cloud Computing is a paradigm that enables the access, in a simple and pervasive way, through the network, to shared and configurable computing resources. Such resources can be offered on demand to users in a pay-per-use model. With the advance of this paradigm, a single service offered by a cloud platform might not be enough to meet all the requirements of clients. Ergo, it is needed to compose services provided by different cloud platforms. However, current cloud platforms are not implemented using common standards, each one has its own APIs and development tools, which is a barrier for composing different services. In this context, the Cloud Integrator, a service-oriented middleware platform, provides an environment to facilitate the development and execution of multi-cloud applications. The applications are compositions of services, from different cloud platforms and, represented by abstract workflows. However, Cloud Integrator has some limitations, such as: (i) applications are locally executed; (ii) users cannot specify the application in terms of its inputs and outputs, and; (iii) experienced users cannot directly determine the concrete Web services that will perform the workflow. In order to deal with such limitations, this work proposes Cloud Stratus, a middleware platform that extends Cloud Integrator and offers different ways to specify an application: as an abstract workflow or a complete/partial execution flow. The platform enables the application deployment in cloud virtual machines, so that several users can access it through the Internet. It also supports the access and management of virtual machines in different cloud platforms and provides services monitoring mechanisms and assessment of QoS parameters. Cloud Stratus was validated through a case study that consists of an application that uses different services provided by different cloud platforms. Cloud Stratus was also evaluated through computing experiments that analyze the performance of its processes.
Resumo:
Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been used successfully in the segmentation of images from several modalities. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper we present an extension of the fuzzy segmentation algorithm that achieves the segmentation of textures by employing adaptive affinity functions as long as we extend the algorithm to tridimensional images. The adaptive affinity functions change the size of the area where they compute the texture descriptors, according to the characteristics of the texture being processed, while three dimensional images can be described as a finite set of two-dimensional images. The algorithm then segments the volume image with an appropriate calculation area for each texture, making it possible to produce good estimates of actual volumes of the target structures of the segmentation process. We will perform experiments with synthetic and real data in applications such as segmentation of medical imaging obtained from magnetic rosonance
Resumo:
Graph Reduction Machines, are a traditional technique for implementing functional programming languages. They allow to run programs by transforming graphs by the successive application of reduction rules. Web service composition enables the creation of new web services from existing ones. BPEL is a workflow-based language for creating web service compositions. It is also the industrial and academic standard for this kind of languages. As it is designed to compose web services, the use of BPEL in a scenario where multiple technologies need to be used is problematic: when operations other than web services need to be performed to implement the business logic of a company, part of the work is done on an ad hoc basis. To allow heterogeneous operations to be part of the same workflow, may help to improve the implementation of business processes in a principled way. This work uses a simple variation of the BPEL language for creating compositions containing not only web service operations but also big data tasks or user-defined operations. We define an extensible graph reduction machine that allows the evaluation of BPEL programs and implement this machine as proof of concept. We present some experimental results.
Resumo:
Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.
Resumo:
Event-B is a formal method for modeling and verification of discrete transition systems. Event-B development yields proof obligations that must be verified (i.e. proved valid) in order to keep the produced models consistent. Satisfiability Modulo Theory solvers are automated theorem provers used to verify the satisfiability of logic formulas considering a background theory (or combination of theories). SMT solvers not only handle large firstorder formulas, but can also generate models and proofs, as well as identify unsatisfiable subsets of hypotheses (unsat-cores). Tool support for Event-B is provided by the Rodin platform: an extensible Eclipse based IDE that combines modeling and proving features. A SMT plug-in for Rodin has been developed intending to integrate alternative, efficient verification techniques to the platform. We implemented a series of complements to the SMT solver plug-in for Rodin, namely improvements to the user interface for when proof obligations are reported as invalid by the plug-in. Additionally, we modified some of the plug-in features, such as support for proof generation and unsat-core extraction, to comply with the SMT-LIB standard for SMT solvers. We undertook tests using applicable proof obligations to demonstrate the new features. The contributions described can potentially affect productivity in a positive manner.
Resumo:
Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.
Resumo:
The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.
Resumo:
High dependability, availability and fault-tolerance are open problems in Service-Oriented Architecture (SOA). The possibility of generating software applications by integrating services from heterogeneous domains, in a reliable way, makes worthwhile to face the challenges inherent to this paradigm. In order to ensure quality in service compositions, some research efforts propose the adoption of verification techniques to identify and correct errors. In this context, exception handling is a powerful mechanism to increase SOA quality. Several research works are concerned with mechanisms for exception propagation on web services, implemented in many languages and frameworks. However, to the extent of our knowledge, no works found evaluates these mechanisms in SOA with regard to the .NET framework. The main contribution of this paper is to evaluate and to propose exception propagation mechanisms in SOA to applications developed within the .NET framework. In this direction, this work: (i)extends a previous study, showing the need to propose a solution to the exception propagation in SOA to applications developed in .NET, and (ii) show a solution, based in model obtained from the results found in (i) and that will be applied in real cases through of faults injections and AOP techniques.
Resumo:
Navigation, in both virtual and real environments, is the process of a deliberated movement to a specific place that is usually away from the origin point, and that cannot be perceived from it. Navigation aid techniques (TANs) have as their main objective help finding a path through a virtual environment to a desired location and, are widely used because they ease the navigation on these unknown environments. Tools like maps, GPS (Global Positioning System) or even oral instructions are real world examples of TAN usage. Most of the works which propose new TANs for virtual environments aim to analyze their impact in efficiency gain on navigation tasks from a known place to an unknown place. However, such papers tend to ignore the effect caused by a TAN usage over the route knowledge acquisition process, which is important on virtual to real training transfer, for example. Based on a user study, it was possible to confirm that TANs with different strategies affects the performance of search tasks differently and that the efficiency of the help provided by a TAN is not inversely related to the cognitive load of the technique’s aids. A technique classification formula was created. This formula utilizes three factors instead of only efficiency. The experiment’s data were applied to the formula and we obtained a better refinement of help level provided by TANs.
Resumo:
Location systems have become increasingly part of people's lives. For outdoor environments, GPS appears as standard technology, widely disseminated and used. However, people usually spend most of their daily time in indoor environments, such as: hospitals, universities, factories, buildings, etc. In these environments, GPS does not work properly causing an inaccurate positioning. Currently, to perform the location of people or objects in indoor environments no single technology could reproduce for indoors the same result achieved by GPS for outdoors environments. Due to this, it is necessary to consider use of information from multiple sources using diferent technologies. Thus, this work aims to build an Adaptable Platform for Indoor location. Based on this goal, the IndoLoR platform is proposed. This platform aims to allow information reception from diferent sources, data processing, data fusion, data storage and data retrieval for the indoor location context.
Resumo:
Location systems have become increasingly part of people's lives. For outdoor environments, GPS appears as standard technology, widely disseminated and used. However, people usually spend most of their daily time in indoor environments, such as: hospitals, universities, factories, buildings, etc. In these environments, GPS does not work properly causing an inaccurate positioning. Currently, to perform the location of people or objects in indoor environments no single technology could reproduce for indoors the same result achieved by GPS for outdoors environments. Due to this, it is necessary to consider use of information from multiple sources using diferent technologies. Thus, this work aims to build an Adaptable Platform for Indoor location. Based on this goal, the IndoLoR platform is proposed. This platform aims to allow information reception from diferent sources, data processing, data fusion, data storage and data retrieval for the indoor location context.
Resumo:
Component-based Software Engineering (CBSE) and Service-Oriented Architecture (SOA) became popular ways to develop software over the last years. During the life-cycle of a software system, several components and services can be developed, evolved and replaced. In production environments, the replacement of core components, such as databases, is often a risky and delicate operation, where several factors and stakeholders should be considered. Service Level Agreement (SLA), according to ITILv3’s official glossary, is “an agreement between an IT service provider and a customer. The agreement consists on a set of measurable constraints that a service provider must guarantee to its customers.”. In practical terms, SLA is a document that a service provider delivers to its consumers with minimum quality of service (QoS) metrics.This work is intended to assesses and improve the use of SLAs to guide the transitioning process of databases on production environments. In particular, in this work we propose SLA-Based Guidelines/Process to support migrations from a relational database management system (RDBMS) to a NoSQL one. Our study is validated by case studies.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Given the growing demand for the development of mobile applications, driven by use increasingly common in smartphones and tablets grew in society the need for remote data access in full in the use of mobile application without connectivity environments where there is no provision network access at all times. Given this reality, this work proposes a framework that present main functions are the provision of a persistence mechanism, replication and data synchronization, contemplating the creation, deletion, update and display persisted or requested data, even though the mobile device without connectivity with the network. From the point of view of the architecture and programming practices, it reflected in defining strategies for the main functions of the framework are met. Through a controlled study was to validate the solution proposal, being found as the gains in reducing the number of lines code and the amount of time required to perform the development of an application without there being significant increase for the operations.