201 resultados para Compressão de dados (Telecomunicações)
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
Breast cancer, despite being one of the leading causes of death among women worldwide is a disease that can be cured if diagnosed early. One of the main techniques used in the detection of breast cancer is the Fine Needle Aspirate FNA (aspiration puncture by thin needle) which, depending on the clinical case, requires the analysis of several medical specialists for the diagnosis development. However, such diagnosis and second opinions have been hampered by geographical dispersion of physicians and/or the difficulty in reconciling time to undertake work together. Within this reality, this PhD thesis uses computational intelligence in medical decision-making support for remote diagnosis. For that purpose, it presents a fuzzy method to assist the diagnosis of breast cancer, able to process and sort data extracted from breast tissue obtained by FNA. This method is integrated into a virtual environment for collaborative remote diagnosis, whose model was developed providing for the incorporation of prerequisite Modules for Pre Diagnosis to support medical decision. On the fuzzy Method Development, the process of knowledge acquisition was carried out by extraction and analysis of numerical data in gold standard data base and by interviews and discussions with medical experts. The method has been tested and validated with real cases and, according to the sensitivity and specificity achieved (correct diagnosis of tumors, malignant and benign respectively), the results obtained were satisfactory, considering the opinions of doctors and the quality standards for diagnosis of breast cancer and comparing them with other studies involving breast cancer diagnosis by FNA.
Resumo:
Due to the current need of the industry to integrate data of the beginning of production originating from of several sources and of transforming them in useful information for sockets of decisions, a search exists every time larger for systems of visualization of information that come to collaborate with that functionality. On the other hand, a common practice nowadays, due to the high competitiveness of the market, it is the development of industrial systems that possess characteristics of modularity, distribution, flexibility, scalability, adaptation, interoperability, reusability and access through web. Those characteristics provide an extra agility and a larger easiness in adapting to the frequent changes of demand of the market. Based on the arguments exposed above, this work consists of specifying a component-based architecture, with the respective development of a system based on that architecture, for the visualization of industrial data. The system was conceived to be capable to supply on-line information and, optionally, historical information of variables originating from of the beginning of production. In this work it is shown that the component-based architecture developed possesses the necessary requirements for the obtaining of a system robust, reliable and of easy maintenance, being, like this, in agreement with the industrial needs. The use of that architecture allows although components can be added, removed or updated in time of execution, through a manager of components through web, still activating more the adaptation process and updating of the system
Resumo:
This work describes the study and the implementation of the speed control for a three-phase induction motor of 1,1 kW and 4 poles using the neural rotor flux estimation. The vector speed control operates together with the winding currents controller of the stator phasis. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed controls to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The main DSP recources used by the system are, respectively, the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture
Resumo:
In this work, we propose the Interperception paradigm, a new approach that includes a set of rules and a software architecture for merge users from different interfaces in the same virtual environment. The system detects the user resources and provide transformations on the data in order to allow its visualization in 3D, 2D and textual (1D) interfaces. This allows any user to connect, access information, and exchange information with other users in a feasible way, without needs of changing hardware or software. As results are presented two virtual environments builded acording this paradigm
Resumo:
In this work, we propose a probabilistic mapping method with the mapped environment represented through a modified occupancy grid. The main idea of the proposed method is to allow a mobile robot to construct in a systematic and incremental way the geometry of the underlying space, obtaining at the end a complete environment map. As a consequence, the robot can move in the environment in a safe way, based on a confidence value of data obtained from its perceptive system. The map is represented in a coherent way, according to its sensory data, being these noisy or not, that comes from exterior and proprioceptive sensors of the robot. Characteristic noise incorporated in the data from these sensors are treated by probabilistic modeling in such a way that their effects can be visible in the final result of the mapping process. The results of performed experiments indicate the viability of the methodology and its applicability in the area of autonomous mobile robotics, thus being an contribution to the field
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
Robots are present each time more on several areas of our society, however they are still considered expensive equipments that are restricted to few people. This work con- sists on the development of control techniques and architectures that make possible the construction and programming of low cost robots with low programming and building complexity. One key aspect of the proposed architecture is the use of audio interfaces to control actuators and read sensors, thus allowing the usage of any device that can produce sounds as a control unit of a robot. The work also includes the development of web ba- sed programming environments that allow the usage of computers or mobile phones as control units of the robot, which can be remotely programmed and controlled. The work also includes possible applications of such low cost robotic platform, including mainly its educational usage, which was experimentally validated by teachers and students of seve- ral graduation courses. We also present an analysis of data obtained from interviews done with the students before and after the use of our platform, which confirms its acceptance as a teaching support tool
Resumo:
Currently, one of the biggest challenges for the field of data mining is to perform cluster analysis on complex data. Several techniques have been proposed but, in general, they can only achieve good results within specific areas providing no consensus of what would be the best way to group this kind of data. In general, these techniques fail due to non-realistic assumptions about the true probability distribution of the data. Based on this, this thesis proposes a new measure based on Cross Information Potential that uses representative points of the dataset and statistics extracted directly from data to measure the interaction between groups. The proposed approach allows us to use all advantages of this information-theoretic descriptor and solves the limitations imposed on it by its own nature. From this, two cost functions and three algorithms have been proposed to perform cluster analysis. As the use of Information Theory captures the relationship between different patterns, regardless of assumptions about the nature of this relationship, the proposed approach was able to achieve a better performance than the main algorithms in literature. These results apply to the context of synthetic data designed to test the algorithms in specific situations and to real data extracted from problems of different fields
Resumo:
The use of Geographic Information Systems (GIS) has becoming very important in fields where detailed and precise study of earth surface features is required. Applications in environmental protection are such an example that requires the use of GIS tools for analysis and decision by managers and enrolled community of protected areas. In this specific field, a challenge that remains is to build a GIS that can be dynamically fed with data, allowing researchers and other agents to recover actual and up to date information. In some cases, data is acquired in several ways and come from different sources. To solve this problem, some tools were implemented that includes a model for spatial data treatment on the Web. The research issues involved start with the feeding and processing of environmental control data collected in-loco as biotic and geological variables and finishes with the presentation of all information on theWeb. For this dynamic processing, it was developed some tools that make MapServer more flexible and dynamic, allowing data uploading by the proper users. Furthermore, it was also developed a module that uses interpolation to aiming spatial data analysis. A complex application that has validated this research is to feed the system with data coming from coral reef regions located in northeast of Brazil. The system was implemented using the best interactivity concept provided by the AJAX model and resulted in a substantial contribution for efficiently accessing information, being an essential mechanism for controlling events in the environmental monitoring
Resumo:
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, covering since communication aspects to issues related with energy efficiency. When source sensors are endowed with cameras for visual monitoring, a new scope of challenges is raised, as transmission and monitoring requirements are considerably changed. Particularly, visual sensors collect data following a directional sensing model, altering the meaning of concepts as vicinity and redundancy but allowing the differentiation of source nodes by their sensing relevancies for the application. In such context, we propose the combined use of two differentiation strategies as a novel QoS parameter, exploring the sensing relevancies of source nodes and DWT image coding. This innovative approach supports a new scope of optimizations to improve the performance of visual sensor networks at the cost of a small reduction on the overall monitoring quality of the application. Besides definition of a new concept of relevance and the proposition of mechanisms to support its practical exploitation, we propose five different optimizations in the way images are transmitted in wireless visual sensor networks, aiming at energy saving, transmission with low delay and error recovery. Putting all these together, the proposed innovative differentiation strategies and the related optimizations open a relevant research trend, where the application monitoring requirements are used to guide a more efficient operation of sensor networks
Resumo:
The Support Vector Machines (SVM) has attracted increasing attention in machine learning area, particularly on classification and patterns recognition. However, in some cases it is not easy to determinate accurately the class which given pattern belongs. This thesis involves the construction of a intervalar pattern classifier using SVM in association with intervalar theory, in order to model the separation of a pattern set between distinct classes with precision, aiming to obtain an optimized separation capable to treat imprecisions contained in the initial data and generated during the computational processing. The SVM is a linear machine. In order to allow it to solve real-world problems (usually nonlinear problems), it is necessary to treat the pattern set, know as input set, transforming from nonlinear nature to linear problem. The kernel machines are responsible to do this mapping. To create the intervalar extension of SVM, both for linear and nonlinear problems, it was necessary define intervalar kernel and the Mercer s theorem (which caracterize a kernel function) to intervalar function
Resumo:
In academia, it is common to create didactic processors, facing practical disciplines in the area of Hardware Computer and can be used as subjects in software platforms, operating systems and compilers. Often, these processors are described without ISA standard, which requires the creation of compilers and other basic software to provide the hardware / software interface and hinder their integration with other processors and devices. Using reconfigurable devices described in a HDL language allows the creation or modification of any microarchitecture component, leading to alteration of the functional units of data path processor as well as the state machine that implements the control unit even as new needs arise. In particular, processors RISP enable modification of machine instructions, allowing entering or modifying instructions, and may even adapt to a new architecture. This work, as the object of study addressing educational soft-core processors described in VHDL, from a proposed methodology and its application on two processors with different complexity levels, shows that it s possible to tailor processors for a standard ISA without causing an increase in the level hardware complexity, ie without significant increase in chip area, while its level of performance in the application execution remains unchanged or is enhanced. The implementations also allow us to say that besides being possible to replace the architecture of a processor without changing its organization, RISP processor can switch between different instruction sets, which can be expanded to toggle between different ISAs, allowing a single processor become adaptive hybrid architecture, which can be used in embedded systems and heterogeneous multiprocessor environments