85 resultados para Calor.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The waste in the industries of escargot processing is very big. This is composed basically of escargot meat out of the commercialization patterns and the visceras. In this context, there is a need to take advantage to the use of these sub-products. A possibility should be drying them and transforming them in a certain form to be reused. Than, the present work has the objective of studying the reutilization of the sub-products of the escargot industrialization for by means of drying process. The samples were transformed in pastes, through a domestic processor for approximately 1 minute and compacted in trays of aluminum without perforations with three different heights (5 mm, 10 mm and 15 mm). The drying was accomplished in a tray dryer with air circulation and transverse flow at a speed of 0,2 m/s and three temperature levels (70°C, 80°C and 90ºC). A drying kinetics study was accomplished for the obtained curves and for the heat and mass transfer coefficients using experimental procedures based in an experimental planning of 22 factorial type. Microbiological and physiochemical analysis were also accomplished for the in nature and the dehydrated sub-products. In the drying process, it was observed the great importance of the external resistances to the mass transfer and heat in the period of constant tax influenced by the temperature. The evaporation taxes indicated a mixed control of the mass transfer for the case of the thickest layers. As already expected, the drying constant behavior was influenced by the temperature and thickness of the medium, increasing and decreasing. The statistical analysis of the results, in agreement with the factorial planning 22, showed that the fissures, the shrinking of the transfer area and the formation of a crust on the surface might have contributed to the differences between the practical results and the linear model proposed. The temperature and the thickness influenced significantly in the answers of the studied variables: evaporation tax and drying constant. They were obtained significant statistical models and predictive ones for evaporation tax for the meat as well as for the visceras

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate the foam mat drying process of pineapple and mango pulp, as well as to evaluate the final product quality. Initially, the selection of fruit and additives was conducted based on density and stability determinations of mango, seriguela, umbu and pineapple foams. After selecting pineapple and mango for further studies, the fruit pulps and fruit foams were characterized in regard to their physicochemical composition. The temperature (60oC or 70oC) and the foam thickness (4 and 11 mm) were evaluated in accordance to the obtained drying curves and after model adjustment. Mango and pineapple powders obtained at the best process conditions were characterized in regard to their physicochemical composition, solubility, reconstitution time. Yoghurts were prepared with the addition of pineapple and mango powders and they were evaluated for their sensory acceptance. Results show that the best drying rates were achieved by using 70o C and layers 4mm thick for both fruits. The Page model successfully fitted the drying experimental data and it can be used as a predictive model. Pineapple and mango powders showed acid pH, high soluble solids content, low water activity (approx. 0.25), lipids between 1.46% and 2.03%, protein around 2.00%, and ascorbic acid content of 17,73 mg/100g and 14.32 mg/100g, for mango and pineapple, respectively. It was observed higher ascorbic acid retention for pineapple and mango powders processed at 70o C, which would be explained by the lower drying time applied. The fruit powders exhibited high solubility and fast reconstitution in water. The sensory acceptance indexes for yoghurts with the addition of both fruit powders were higher than 70%, which reflect the satisfactory product acceptance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the development, implementation and improvement of a macroscopic model to describe the behavior of the spouted bed dryer with continuous feeding for pastes and suspensions drying. This model is based on the CST model (Freire et al., 2009) and the model of Fernandes (2005), whose theoretical foundation is based on macroscopic mass and heat balances for the three phases involved in the process: gas, liquid and solid. Because this technique is quite relevant, the studies of modeling and simulation of spouted bed drying are essential in the analysis of the process as a whole, because through them it is possible to predict and understand the behavior of the process, which contributes significantly to more efficient project and operation. The development and understanding of the phenomena involved in the drying process can be obtained by comparing the experimental data with those from computer simulations. Such knowledge is critical for choosing properly the process conditions in order to obtain a good drying efficiency. Over the past few years, researches and development of works in the field of pastes and suspensions drying in spouted bed has been gaining ground in Brazil. The Particulate Systems Laboratory at Universidade Federal do Rio Grande do Norte, has been developing several researches and generating a huge collection of experimental data concerning the drying of fruit pulps, vegetables pastes, goat milk and suspensions of agro-industrial residues. From this collection, some data of goat milk and residue from acerola (Malpighia glabra L.) drying were collected. For the first time, these data were used for the development and validation of a model that can describe the behavior of spouted bed dryer. Thus, it was possible to model the dryer and to evaluate the influence of process variables (paste feeding, temperature and flow rate of the drying air) in the drying dynamics. We also performed water evaporation experiments in order to understand and to study the behavior of the dryer wall temperature and the evaporation rate. All these analysis will contribute to future works involving the implementation of control strategies in the pastes and suspensions drying. The results obtained in transient analysis were compared with experimental data indicating that this model well represents the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O óleo produzido nos novos campos de petróleo está cada vez mais parafínico e viscoso, com isso, à medida que o óleo é escoado, parafinas são depositadas sobre as paredes internas do tubo, e ao longo do tempo, tendem a reduzir drasticamente a área transversal ao escoamento. Visando estudar o processo de solubilização da parafina em dutos, esse trabalho objetiva desenvolver modelos matemáticos que represente o processo, com base nos fenômenos envolvidos no mesmo tais como transferência de massa, transferência de energia e equilíbrio sólido-líquido, implementando-os em um ambiente de desenvolvimento VBA (Visual Basic) for Excel ®. O presente trabalho foi realizado em quatro etapas: i) modelagem dos fenômenos de transferência de calor e massa, ii) modelagem da rotina dos coeficientes de atividade através do modelo UNIFAC e modelagem do sistema de equilíbrio sólido-líquido; iii) modelagem matemática do processo de solubilização e cálculo da espessura da parafina ao longo do tempo; iv) implementação dos modelos em um ambiente de desenvolvimento VBA for Excel® e criação de um simulador com uma interface gráfica, para simular o processo de solubilização da parafina depositada em dutos e sua otimização. O simulador conseguiu produzir soluções bastante adequadas, mantendo continuidade das equações diferenciáveis do balanço de energia e de massa, com uma interpretação física viável, sem a presença de dissipação de oscilações nos perfis de temperatura e massa. Além disso, esse simulador visa permitir a simulação nas diversas condições de escoamento, bem como compreender a importância das variáveis (vazão, temperatura de entrada, temperatura externa, cadeia carbônica do solvente). Através dos resultados foram possíveis verificar os perfis de temperatura, fração molar e o de solubilização

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a spray-dryer designed to oxalate-niobate precursors and suitable for the production of Niobium Carbide. The dryer was intended to produce powders of controlled particle size. First, the precursor is dissolved in water to produce a solution of known concentration and then it is atomized on the spray-dryer to produce the powder. This equipment consists of a 304 stainless steel chamber, 0.48 m x 1.9 m (diameter x length), with a conical shape at the lower portion, which is assembled on a vertical platform. The chamber is heated by three 4 kW electrical resistances. In this process, drying air is heated as it flows inside a serpentine surrounding the chamber, in contrary to more traditional processes in which the hot drying air is used to heat the component. The air enters the chamber at the same temperature of the chamber, thus avoiding adherence of particles on the internal surface. The low speed flow is concurrent, directed from the top to the bottom portion of the chamber. Powders are deposited on a 0.4 m diameter tray, which separates the cylindrical portion from the conical portion of the chamber. The humid air is discharged though a plug placed underneath the collecting tray. A factorial experimental planning was prepared to study the influence of five parameters (concentration, input flow, operation temperature, drying air flow and spray air flow) on the characteristics of the powders produced. Particle size distribution and shape were measured by laser granulometry and scanning electronic microscopy. Then, the powders are submitted to reaction in a CH4 / H2 atmosphere to compare the characteristics of spray-dried powders with powders synthetizided by conventional methods

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steam assisted gravity drainage process (SAGD) involves two parallel horizontal wells located in a same vertical plane, where the top well is used as steam injector and the bottom well as producer. The dominant force in this process is gravitational. This improved oil recovery method has been demonstrated to be economically viable in commercial projects of oil recovery for heavy and extra heavy oil, but it is not yet implemented in Brazil. The study of this technology in reservoirs with characteristics of regional basins is necessary in order to analyze if this process can be used, minimizing the steam rate demand and improving the process profitability. In this study, a homogeneous reservoir was modeled with characteristics of Brazilian Northeast reservoirs. Simulations were accomplished with STARS , a commercial software from Computer Modelling Group, which is used to simulate improved oil recovery process in oil reservoirs. In this work, a steam optimization was accomplished in reservoirs with different physical characteristics and in different cases, through a technical-economic analysis. It was also studied a semi-continuous steam injection or with injection stops. Results showed that it is possible to use a simplified equation of the net present value, which incorporates earnings and expenses on oil production and expenses in steam requirement, in order to optimize steam rate and obtaining a higher net present value in the process. It was observed that SAGD process can be or not profitable depending on reservoirs characteristics. It was also obtained that steam demand can still be reduced injecting in a non continuous form, alternating steam injection with stops at several time intervals. The optimization of these intervals allowed to minimize heat losses and to improve oil recovery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, Brazil has both the greatest goat herd and the greatest goat milk production of South America. The state of Rio Grande do Norte, located in northeast of Brazil, has an average year production of three thousand cubic meters of goat milk in natura. Part of this milk production is homemade and it comes from small farms, which unite in rural cooperatives created to encourage the production and implementation of industrial processes for preservation and processing of milk. Results presented by literature and obtained from preliminary essays in this thesis show that non conventional dryer of spouted bed with inert particles is able to produce powder milk from in natura milk (cattle or goat), with the same quality of spray dryer, however, operating at low cost. The method of drying in spouted bed consists of injecting milk emulsion on the bed of inert particles gushed by hot air. This emulsion covers the particles with a thin film, which dries and is reduced to powder during the circulation of inerts inside the bed. The powder is dragged by exhaustion air and separated in the cyclone. The friction among particles resulted from the particles circulation, encourages high taxes of shear in the thin film of emulsion, breaking the cohesive forces and making this process possible. Studying the drying process and the powder goat milk production in one unit of spouted bed with inert particles, seeing the development of a low cost technological route for powder milk production is the aim of this thesis. The powder milk produced by this route must attend the local demand of food industries which need an intermediate product to be used as a food ingredient (ice-cream, milk candy). In order to reach this aim, this thesis approaches the aspects related to physical, thermodynamics and physic-chemicals characteristics of goat milk, whose complete data are still inexistent in the literature. The properties of materials are of great importance to the project of any process which involves the operations of transportation of movement, heat and mass quantity, such as the dryers which operate in fluid dynamically active regime, like the spouted bed. It was obtained new data related to the goat milk properties in function of concentration of solids and temperature. It is also important to mention the study developed about the kinetic of solids retention in the bed of inert particles during the drying of goat milk. It was found more adequate processes conditions to the proposed technological route to be implemented in small and micro-industries, with simplifications in the system of milk injection as well as in the form of operation of the dryer. Important data were obtained for a posterior stage of this research which involves the v modeling, simulation, control and optimization of the process. The results obtained in this thesis, in relation to process performance as well as to the quality of produced powder milk validate the proposal of using the spouted bed dryer in the production of powder goat milk

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the need to deploy management and monitoring systems of natural resources in areas susceptible to environmental degradation, as is the case of semiarid regions, several works have been developed in order to find effective models and technically and economically viable. Therefore, this study aimed to estimate the daily actual evapotranspiration (ETr) through the application of the Surface Energy Balance Algorithm for Land (SEBAL), from remote sensing products, in a semiarid region, Seridó of the Rio Grande do Norte, and do the validation of these estimates using ETr values obtained by the Penman-Monteith (standard method of the Food and Agriculture Organization-FAO). The SEBAL is based on energy balance method, which allows obtaining the vertical latent heat flux (LE) with orbital images and, consequently, of the evapotranspiration through the difference of flows, also vertical, of heat in the soil (G), sensitive heat (H) and radiation balance (Rn). The study area includes the surrounding areas of the Dourado reservoir, located in the Currais Novos/RN city. For the implementation of the algorithm were used five images TM/Landsat-5. The work was divided in three chapters in order to facilitate a better discussion of each part of the SEBAL processing, distributed as follows: first chapter addressing the spatio-temporal variability of the biophysical variables; second chapter dealing with spatio-temporal distribution of instant and daily radiation balance; and the third chapter discussing the heart of the work, the daily actual evapotranspiration estimation and the validation than to the study area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is nowadays a growing demand for located cooling and stabilization in optical and electronic devices, haul of portable systems of cooling that they allow a larger independence in several activities. The modules of thermoelectrical cooling are bombs of heat that use efect Peltier, that consists of the production of a temperature gradient when an electric current is applied to a thermoelectrical pair formed by two diferent drivers. That efect is part of a class of thermoelectrical efcts that it is typical of junctions among electric drivers. The modules are manufactured with semiconductors. The used is the bismuth telluride Bi2Te3, arranged in a periodic sequence. In this sense the idea appeared of doing an analysis of a system that obeys the sequence of Fibonacci. The sequence of Fibonacci has connections with the golden proportion, could be found in the reproductive study of the bees, in the behavior of the light and of the atoms, as well as in the growth of plants and in the study of galaxies, among many other applications. An apparatus unidimensional was set up with the objective of investigating the thermal behavior of a module that obeys it a rule of growth of the type Fibonacci. The results demonstrate that the modules that possess periodic arrangement are more eficient