97 resultados para Tratamento hidrotermal
Resumo:
Vegetables drying plays an important role in the field of food dehydration, being a very old practice that was originated from sun drying items of food in order to preserve them to be consumed during the periods of scarcity. One of these vegetables is the tomato, that was originally grown in South America. Tomatoes are easily perishable after being picked up from the tree and this makes the process of tomato dehydration a challenge due to the high amount of water (95%) contained in them. The present research work was mainly intended to develop alternative processes for tomato conservation, by drying slices of skinned and unskinned tomatoes in the in natura form or in the osmotically pre-dehydrated form. Firstly, the best conditions of the osmotic pre-dehydration process were defined including temperature, immersion time and concentration of the osmotic solution, based on the results of water loss, solids gain and weigh reduction of the pre-dehydration tomatoes at different processing conditions. The osmotic solution used was made up of NaCl (5 and 10%) and sucrose (25 and 35%) at different combinations. For a fixed conditions of osmotic pre-dehydration, the drying tests of the pre-processed and in natura tomatoes were carried out in a stove with air circulation and a convective dryer with trays, at two levels of temperature. The sensorial analysis of the osmotically pre-treated and unskinned dehydrated tomatoes was carried out as well as a study on the their shelf-live. The results obtained showed that the drying of the tomatoes took place as a result of the internal control of the water transport, and did not show a constant rate, while two distinct periods of the decreasing phase were observed. The osmotic pre treatment substancially reduced the initial amount of humidity in the tomatoes, thus reducing the necessary time for the product to attain levels of intermediate humidity. The impermeability of the tomato skin was identified as well as the unfavorable influence of the pre-treatment on the unskinned tomatoes, whose solid gain brought about a decrease in the water activity with subsequent reduction of the drying rate. Despite the various simplifications carried out during the development of this study, the proposed diffusive model adjusted to the experimental data satisfactorily, thus making it possible to determine the effective coefficients of diffusion, whose results were consistent and compatible with those found in the current literature. Concerning the higher rates of evaporation and the lowest processing time, the best results were obtained in the drying of the unskinned, in natura tomatoes and of the skinned, pre-dehydrated tomatoes, at 60ºC, both processed in the convective drier. The results of the sensorial analysis of the unskinned and pre-treated product did not prove to be satisfactory. Regarding the shelf-live of the tomatoes, for a period of 45 days, no physicochemical or microbiological alteration of the product was noted
Resumo:
The present work had as objective to apply an experimental planning aiming at to improve the efficiency of separation of a new type of mixer-settler applied to treat waste water contaminated with oil. An unity in scale of laboratory, was installed in the Post-graduation Program of Chemical Engineering of UFRN. It was constructed in partnership with Petrobras S.A. This called device Misturador-Decantador a Inversão de Fases (MDIF) , possess features of conventional mixer-settler and spray column type. The equipment is composed of three main parts: mixing chamber; chamber of decantation and chamber of separation. The efficiency of separation is evaluated analyzing the oil concentrations in water in the feed and the output of the device. For the analysis one used the gravimetric method of oil and greases analysis (TOG). The system in study is a water of formation emulsified with oil. The used extractant is a mixture of Turpentine spirit hydro-carbons, supplied for Petrobras. It was applied, for otimization of the efficiency of separation of the equipment, an experimental planning of the composite central type, having as factorial portion fractionary factorial planning 2 5-2, with the magnifying of the type star and five replications in the central point. In this work, the following independents variables were studied: contents of oil in the feed of the device; volumetric ratio (O/A); total flowrate ; agitation in the mixing chamber and height of the organic bed. Minimum and maximum limits for the studied variables had been fixed according previous works. The analysis of variance for the equation of the empirical model, revealed statistically significant and useful results for predictions ends. The variance analysis also presented the distribution of the error as a normal distribution and was observed that as the dispersions do not depend on the levels of the factors, the independence assumption can be verified. The variation around the average is explained by 98.98%, or either, equal to the maximum value, being the smoothing of the model in relation to the experimental points of 0,98981. The results present a strong interaction between the variable oil contents in the feed and agitation in the mixing chamber, having great and positive influence in the separation efficiency. Another variable that presented a great positive influence was the height of the organic bed. The best results of separation efficiency had been obtained for high flowrates when associates the high oil concentrations and high agitation. The results of the present work had shown excellent agreement with the results carried out through previous works with the mixer-settler of phase inversion
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
Textile industry deals with a high diversity of processes and generation of wastewaters with a high content of pollutant material. Before being disposed of in water bodies, a pre-treatment of the effluent is carried out, which is sometimes ineffective. In order to be properly treated, physical and chemical properties of the effluent must be known, as well as the pollutant agents that might be present in it. This has turned out to be a great problem in the textile industry, for there is a variety of processes and the pollutant load is very diversified. The characterization of the effluent allows the identification of most critical points and, as a consequence, the most appropriate treatment procedure to be employed, may be chosen. This study presents the results obtained after characterizing the effluent of a textile industry that comprises knitting, dyeing and apparel sections, processing mainly polyester/cotton articles. In this work, twenty samples of the effluent were collected, and related to the changes in production. From the results, a statistical evaluation was applied, determined in function of the rate of flow. The following properties and pollutants agents were quantitatively analysed: temperature; pH; sulfides; chlorine; alcalinity; chlorides; cianides; phenols; color; COD (Chemical Oxygen Demand); TOC (Total Organic Carbon); oil and grease; total, fixed and volatile solids; dissolved, fixed and volatile solids; suspended, fixed and volatile solids; setteable solids and heavy metals such as cadmium, copper, lead, chromium, tin, iron, zinc and nickel. Analyses were carried out according to ABNT NBR 13402 norm, based upon Standard Methods for the Examination of Water and Wastewater. As a consequence, a global treatment proposal is presented, involving clean production practices as contaminant load reducer, followed by conventional (biological) treatment
Resumo:
The aim of this work is to use a new technology in the treatment of produced wastewaters from oil industry. An unit for treat produced waters called UTMDIF, was designed, installed and operated in an industrial plant for treatment of effluents from oil industry. This unit operates by means of the method of separation of phase inversion and can become a promising alternative to solve the problem of oil/water separation. This method constitutes the basis of the working of a new design of mixersettler of vertical configuration which occupies small surface area. The last characteristic becomes specially important when there is limitation on the lay-out of the plant, for example, over maritime platforms to explore oil. This equipment in a semi-industrial scale treats produced wastewaters contaminated with oil at low concentrations (ranging from 30 to 150 mg/L) and throughputs of 320 m3/d (47,4 m3 m-2 h-1). Good results were obtained in oil/water separation which leads to the necessary specification to discharge those wastewaters. Besides, the non dependence of the efficiency of separation in spite of the salinity of the medium becomes the equipment an attractive new technology to treat wastewaters containing oil at low concentrations
Resumo:
Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite
Resumo:
The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
The treatment of colored and alkaline effluent has been a challenge to the textile industry. An alternative to remove the colors of those effluents is applying magnesium chloride as a coagulant agent. The magnesium ion, in high pH, hydrolyzes itself, forming the magnesium hydroxide which has a large adsorptive area and positive electrostatic charges able to act as an efficient coagulant. The bittern wastewater from the salt industries has been studied as a potential font of this magnesium ion. Nowadays, this bittern wastewater is evicted into the sea, without any treatment or other use. This thesis has evaluated the potential of applying the wastewater from the salt industries in the treatment of dyeing effluent containing indigo dye and alkaline pH. All the experiments were made in jar tests simulating the chemical coagulation, flocculation and decantation steps ranging the pH and the concentration of magnesium ion. Were obtained removals between 96% and 76% for turbidity, apparent color, and true color, respectively, using 200mg/L Mg2+. The reduction of costs with acid, when were used the salt industries wastewater, comparing with Al2(SO4)3, was 62%. For the degradation of organic matter remaining in the clarified, around 900 mg/L, was applyed the advanced process of oxidation: photo-Fenton. The preliminary results showed 57% reduction in DOC. According to the results obtained, the salt industries wastewater can be applied, as coagulant, in the physical-chemical treatment of the denim dyeing wastewater, so it is not necessary a previous adjust of pH, efficiently and economically
Resumo:
An evaluation project was conducted on the technique of treatment for effluent oil which is the deriving process to improve cashews. During the evaluation the following techniques were developed: advanced processes of humid oxidation, oxidative processes, processes of biological treatment and processes of adsorption. The assays had been carried through in kinetic models, with an evaluation of the quality of the process by means of determining the chemical demand of oxygen (defined as a technique of control by means of comparative study between the available techniques). The results demonstrated that the natural biodegradation of the effluent ones is limited, as result using the present natural flora in the effluent one revealed impracticable for an application in the industrial systems, independent of the evaluation environment (with or without the oxygen presence). The job of specific microorganisms for the oily composite degradation developed the viability technique of this route, the acceptable levels of inclusion in effluent system of treatment of the improvement of the cashew being highly good with reasonable levels of removal of CDO. However, the use combined with other techniques of daily pay-treatment for these effluent ones revealed to still be more efficient for the context of the treatment of effluent and discarding in receiving bodies in acceptable standards for resolution CONAMA 357/2005. While the significant generation of solid residues the process of adsorption with agroindustrial residues (in special the chitosan) is a technical viable alternative, however, when applied only for the treatment of the effluent ones for discarding in bodies of water, the economic viability is harmed and minimized ambient profits. Though, it was proven that if used for ends of I reuse, the viability is equalized and justifies the investments. There was a study of the photochemistry process which have are applicable to the treatment of the effluent ones, having resulted more satisfactory than those gotten for the UV-Peroxide techniques. There was different result on the one waited for the use of catalyses used in the process of Photo. The catalyses contained the mixing oxide base of Cerium and Manganese, incorporated of Potassium promoters this had presented the best results in the decomposition of the involved pollutants. Having itself an agreed form the gotten photochemistry daily paytreatment resulted, then after disinfection with chlorine the characteristics next the portability to the water were guarantee. The job of the humid oxidation presented significant results in the removal of pollutants; however, its high cost alone is made possible for job in projects of reuses, areas of low scarcity and of raised costs with the capitation/acquisition of the water, in special, for use for industrial and potable use. The route with better economic conditions and techniques for the job in the treatment of the effluent ones of the improvement of the cashew possesses the sequence to follow: conventional process of separation water-oil, photochemistry process and finally, the complementary biological treatment
Resumo:
The petroleum industry deals with problems which are difficult to solve because of their relation to environmental issues. This is because amounts of residue are generated which vary in type and danger level. The soil contamination by non aqueous liquid phase mixtures, specifically hydrocarbon petroleum has been a reason for great concern, mainly the aromatic and polycyclic aromatic, which present risk to human health due to its carcinogenic and mutagenic character. The Advanced Oxidative Processes (AOP) are efficient technologies for destruction of organic compounds of difficult degradation and, often, they are present in low concentrations. They can be considered clean technologies, because there is no formation of solid by-products or the transfer of pollutor phases. This work focuses on the study of the degradation of petroleum industrial waste, by Advanced Oxidation Processes. Treatments tackling petroleum residues, contaminated soil, and water occurring in the production of petroleum reached the following Polycyclic Aromatic Hydrocarbons (PAH) degradation levels: solid residues 100% in 96 treatment hours; water residue - 100% in 6 treatment hours; soil contamination (COT degradation) - 50.3% in 12 treatment hours. AOP were effective in dealing with petroleum residues thus revealing themselves to be a promising treatment alternative
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product