56 resultados para Robustez


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional control schemes applied to Shunt Active Power Filters (SAPF) are Harmonic extractor-based strategies (HEBSs) because their effectiveness depends on how quickly and accurately the harmonic components of the nonlinear loads are identified. The SAPF can be also implemented without the use of the load harmonic extractors. In this case, the harmonic compensating term is obtained from the system active power balance. These systems can be considered as balanced-energy-based schemes (BEBSs) and their performance depends on how fast the system reaches the equilibrium state. In this case, the phase currents of the power grid are indirectly regulated by double sequence controllers with two degrees of freedom, where the internal model principle is employed to avoid reference frame transformation. Additionally the DSC controller presents robustness when the SAPF is operating under unbalanced conditions. Furthermore, SAPF implemented without harmonic detection schemes compensate simultaneously harmonic distortion and reactive power of the load. Their compensation capabilities, however, are limited by the SAPF power converter rating. Such a restriction can be minimized if the level of the reactive power correction is managed. In this work an estimation scheme for determining the filter currents is introduced to manage the compensation of reactive power. Experimental results are shown for demonstrating the performance of the proposed SAPF system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This present work uses a generalized similarity measure called correntropy to develop a new method to estimate a linear relation between variables given their samples. Towards this goal, the concept of correntropy is extended from two variables to any two vectors (even with different dimensions) using a statistical framework. With this multidimensionals extensions of Correntropy the regression problem can be formulated in a different manner by seeking the hyperplane that has maximum probability density with the target data. Experiments show that the new algorithm has a nice fixed point update for the parameters and robust performs in the presence of outlier noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to analyze the relationship between average price with the concentration in the markets (municipalities) in the state of Rio Grande do Norte, is using a little tool applied to the Brazilian market is the spatial econometric model. A data base contains all the stations of the major cities in the state of Rio Grande do Norte and includes 142 observations on stations was used. Theoretical models predict the relationship between the number of competitors in a market and the average price; these theoretical models include: the monopolistic competition of Perloff and Salop (1985), and the search-theoretic, of Carlson and McAfee (1983) and Varian (1980). The empirical results showed that a higher density within a geographic area is associated with a lower average price, thus converging with the monopolistic competition model and with the search-theoretic of Carlson and McAfee (1983). The parameters varied little with the inclusion / exclusion of control variables, showing the robustness of them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SOUZA, Anderson A.S. ; MEDEIROS, Adelardo A. D. ; GONÇALVES, Luiz Marcos G. . Algorítmo de mapeamento usando modelagem probabilística. In: SIMPOSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE, 2007, Natal. Anais... Natal, 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.