125 resultados para Retração gengival
Resumo:
The production of roof tiles in the state of Rio Grande do Norte accounts for around 60% of the total of ceramic pieces produced. There is a need for investment to improve quality and productivity, thereby promoting technological innovations. Accordingly, the aim of this study is to determine the effect of kaolin, potassium feldspar and quartz in two standard formulations, as well as the effect of sintering temperature on the technological properties of linear firing shrinkage, water absorption and bending rupture stress, by fitting the statistical model and using multiple linear regression to assess the relationship between technological properties and independent variables. The raw materials were characterized using the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRF), rational analysis (RA), differential thermal analysis (DTA) and granulometric analysis (GA). The test specimens were compacted by uniaxial pressure (25 MPa), dried in a stove at 110 ºC for 24 hours and sinterized at 850 ºC, 950 ºC and 1050 ºC and held isothermal for 30 minutes. The results obtained indicate that the addition of kaolin to two standard formulations (M and R) promoted a reduction in water absorption values and an increase in bending rupture stress values. The sintering temperatures for group M that resulted in the lowest linear firing shrinkage and water absorption values were 850 ºC and 950 ºC, respectively, and the highest bending rupture stress values were reached at a temperature of 950 ºC. In the case of group R, the sintering temperature that obtained the lowest water absorption and linear firing shrinkage values was 850 ºC, and the highest bending rupture stress values were attained at a temperature of 1050 ºC. This work explains the statistical approach used to fit the model that describes the relationship between the technological properties and percentage of kaolin, quartz and feldspar, as well as the models that enable predictions, provided that the lower and upper limits of the percentage of clay minerals, flux and quartz used in this study are respected. Statistica 6 software was used and results were obtained by stepwise forward regression
Resumo:
This work has for objective study compared the characteristics and technological properties of ceramic bodies from the region of Seridó-RN. The region under study has identified 23 cities where they were 80 ceramics industries. To define the universe of search, there was a survey of pottery that are part of APL Seridó next to the IEL. The characteristics and operating conditions of ceramics industries of the region were identified through a socio-economic questionnaire applied locally, which addressed issues such as: profiles of companies, production process etc. The analysis of information collected from 24 companies identified in seven cities shows that the vast majority of industries is small, with family structure, obsolete equipment and labo, little qualified. Most of the pottery works with low technical knowledge, poor control of the production process and product technology. The raw collected were submitted to analysis of X ray diffraction, chemical composition, termical analysis, particle size distribution and plasticity. Then were produced five formulations and made by uniaxial pressure at 25 MPa for firing in temperatures varying from 850 to 1050 °C. The firing technological properties evaluated were: mass loss to fire, lineal shrinkage, apparent density, apparent porosity, water absorption and flexural strength (3 points). The results indicated that the raw materials from the region have significant similarities in the composition chemical and mineralogical. Furthermore, it indicates the possibility of the use of cycles of firing faster and efficient than the current, limited to some clay mass burning of certain conditions
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
Initially concentrated in some poles at the South and Southeast regions of Brazil, the ceramic tiles industry became wide during the 80 s decade, with a disconcentration industrial and regional pulverization. The competitiveness in the ceramic tiles internal and external consumers markets, it has debtor the industries to invest in sophisticated products each time more, either in design or the technology, but, mainly, in its final properties. Amongst the diverse types of ceramic coating, the porcelanato if has detached had to its process of technological production and excellent characteristics techniques. The Porcelanato is currently the material for coatings that presents the best technical and aesthetic features when compared with others ceramics found on the market. The chemical composition and the others raw materials characteristics have an importance that must to be ally to the inherent characteristics of fabrication process, essentially those related to the cycle of burning. This work had as purpose to develop formularizations of ceramic mass for production of porcelanato without glass coating, pertaining to the group BIa (text of absorption of water ≤ 0.5%) and with resistance superior mechanics 35MPa from raw materials characterized. The ceramic raw materials selected to the development of this study (A1 and A2 clays, feldspate, talc and quartz) were submitted to the following tests: X-ray fluorescence - chemical analysis determination; X-ray diffraction - Analysis of the stages mineralogics; Laser granulometry - size distribution of particles; and Differential thermal analysis - thermal behavior. Were performed tests of absorption of water, lineal retraction of it burns, apparent specific mass and rupture tension the flexing. The results had evidenced that the formularizations that had the A1 clay and talc on its composition were efficient for the porcelanato production remaining their technological characteristics inside of the intervals of variation desired by the Norms of the ABNT
Resumo:
The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte
Resumo:
The types of products manufactured calcium silicate blocks are very diversified in its characteristics. They include accessory bricks, blocks, products in dense material, with or without reinforcements of hardware, great units in cellular material, and thermal insulating products. The elements calcium silicate are of great use in the prefabricated construction, being formed for dense masses and hardened by autoclaving. This work has for objective develop formulations that make possible the obtaining of calcium silicate blocks with characteristics that correspond the specifications technical, in the State of the Rio Grande of the North, in finality of obtaining technical viability for use in the civil construction. The work studied the availability raw materials from convenient for the production of calcium silicate blocks, and the effect of variations of the productive process on the developed products. The studied raw materials were: the quartz sand from the city of São Gonçalo do Amarante/RN, and two lime, a hydrated lime and a pure lime from the city of Governador Dix-Sept Rosado/RN. The raw materials collected were submitted a testes to particle size distribution, fluorescence of X rays, diffraction of X rays. Then were produced 8 formulations and made body-of-test by uniaxial pressing at 36 MPa, and cured for 7 hours at about 18 kgf/cm2 pressing and temperature of approximately 180 °C. The cure technological properties evaluated were: lineal shrinkage, apparent density, apparent porosity, water absorption, modulus of rupture flexural (3 points), resistance compression, phase analysis (XRD) and micromorphological analysis (SEM). From the results presented the technological properties, was possible say that utilization of hydrated lime becomes more viable its utilization in mass limestone silica, for manufacture of calcium silicate blocks
Resumo:
In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity
Resumo:
The State Bahia, Brazil, presents different geological sites it with a very expressive variety minerals. It is situated among the very important States which produces minerals for industries, such as pointed aggregate, ornamentals stones and ceramics raw materials. Nowadays only four companies producting ceramics tiles. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. For this purpose, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis, thermal differential analysis and dilatometric analysis. Admixtures containing different compositions were prepared and fired at four temperatures, 1100 ºC, 1150 ºC, 1200 ºC and 1250 ºC with isotherm for 60 minute and heathing rate of 5 oC/min. After firing the samples, they were characterized by water absorption tests, linear retraction, analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by X-ray diffraction and scanning electron microscopy . The results revealed three ceramics with porcelainized stoneware tiles characteristics and porcelain tile will be produce from raw materials originated in the State of Bahia
Resumo:
The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT
Resumo:
This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash
Resumo:
Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products
Resumo:
Brazil is the world s leading coffee producer. In 2008, 45.99 million of 60 kg bags of benefited coffee were produced. In the process of improvement 50% is grain and 50% is husk, thus, 1.38 million tons of coffee husk are produced annually. The husk is used as combustible in the drying and improvement ovens in the coffee farms, generating ash as residue. These ashes contain a high concentration of alkaline metals and earth metals, mainly K2O and CaO. This work studies the use of this residue in the ceramic tiles industry, as fluxing agents in substitution to the feldspar. Ten mixtures with equal ratios of clay and kaolin, proceeding from Bahia and the residue (varying from 30 to 5%) were defined and produced in uniaxial tool die of 60x20mm with approximately 5 mm of thickness and 45MPa compacting pressure. The samples were fired in four different temperatures: 1100 °C, 1150 °C, 1185 °C and 1200 °C during 60 minutes and characterized by means of X-ray fluorescence, X-ray diffraction, gravimetric thermal analysis and differential thermal analysis. The results of water absorption, apparent porosity, linear shrinkage, XRD, dilatometry, flexural strength and SEM were also analysed. The test specimen with addition of 10% of ash fired in 1200 °C resulted in 0.18% water absorption and 40.77 MPa flexural strength, being classified as porcelain stoneware tiles according to ABNT, UNI and ISO norms
Resumo:
The sector of civil construction is strongly related to the red ceramic industry. This sector uses clay as raw material for manufacturing of various products such as ceramic plates. In this study, two types of clay called clay 1 and clay 2 were collected on deposit in Ielmo Marinho city (RN) and then characterized by thermogravimetric analysis (TG/DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), rational analysis and particle size distribution and dilatometric analyses. Ceramic plates were manufactured by uniaxial pressing and by extrusion. The plates obtained by pressing were produced from the four formulations called 1, 2, 3 and 4, which presented, respectively, the following proportions by mass: 66.5% clay 1 and 33.5% clay 2, 50% clay 1 and 50% clay 2, 33.5% clay 1 and 66.5% clay 2, 25% clay 1 and 75% clay 2. After firing at 850, 950 and 1050 °C with heating rate of 10 °C/min and soaking time of 30 minutes, the following technological properties were determined: linear firing shrinkage, water absorption, apparent porosity, apparent specific mass and tensile strength (3 points). The formulation containing 25% clay 1 produced plates with most satisfactory results of water absorption and mechanical resistance, because of that it was chosen for manufacturing plates by extrusion. A single firing cycle was established for these plates, which took place as follow: heating rate of 2 °C/min up to 600 ºC with soaking time of 60 minutes, followed by heating using the same rate up to 1050 ºC with soaking time of 30 minutes. After this cycle, the same technological properties investigated in the plates obtained by pressing were determined. The results indicate (according to NRB 13818/1997) that the plates obtained by pressing from the mixture containing 25 wt% clay 1, after firing at 1050 °C, reach the specifications for semi-porous coating (BIIb). On the other hand, the plates obtained by extrusion were classified as semi-stoneware (group AIIa)
Resumo:
In recent decades, ceramic products have become indispensable to the technological development of humanity, occupying important positions in scientific production and consequently in industrial production. One area of the economy that continues to absorb large amounts of the products of this sector is Construction. Among the branches of the ceramic industry, there are the red ceramic industry which is traditionally the basis of that economic sector. Among the reasons for which the red ceramic industry became popular in the country, and specifically in Rio Grande do Norte, is the abundance of this raw material, easily found throughout the national territory. However, it appears that the red ceramic industry has deficiencies in technology and skilled labor, resulting in the production of ceramic goods with low added value. Among the factors that determine the quality of the ceramic products red has the proper formulation of the ceramic mass, the conformation and the firing temperature. Thus, the overall goal of this work is to study the mineralogical and technological properties, two clays from the region of the Wasteland Potiguar industrial ceramist. Therefore, the raw materials were characterized by analysis of Xray diffraction (XRD) analysis, X-ray fluorescence (XRF), particle size analysis (FA), scanning electron microscopy (SEM), optical microscopy (OM ), plasticity index (PI), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The technological properties of the material were analyzed by water absorption tests (AA%) porosity (% PA), the linear shrinkage (RT%), apparent density (MEA), loss on ignition (PF%) and flexural strength three points (TRF)
Resumo:
In this work is the addition of a metallic ion, of the metal Manganese, in a clay of Rio Grande do Norte state for structural ceramics use, the objective this study was to assess the evolution of ceramic properties. The clay was characterized by Chemical and Thermal analysis and Xray difraction. The metallic ion was added in the clay as aqueous solutions at concentrations of 100, 150 and 200 mg / L. The molded by extrusion and the burned were temperatures at 850, 950, 1050 and 1150 º C. Was made Chemical Analysis and investigated the following parameters environmental and ceramic: Solubility, Colour, Linear Retraction (%), Water Absorption (%), Gresification Curves, Apparent Porosity (%), Apparent Specific Mass (g/cm3) and Flexion Rupture Module (kgf/cm2). The results showed that increasing the concentration of metallic ion, properties such as Apparent Porosity (%), Water Absorption (%) decreases and the Flexion Rupture Module (kgf/cm2) increases with increasing temperature independent of the concentration of the ion. The gresification curves showed that the optimum firing temperatures were in the range between 950 and 1050 ° C. The evaluation of the properties showed that the ceramic material can be studied its use in solid brick and ceramic materials with structural function of filling. The results of solubility showed that the addition of ion offers no risk to the environment