127 resultados para Polissacarídeos sulfatados. Fucanas. Nanogéis. Atividadeantitumoral. Citotoxicidade
Resumo:
Fucans is a name used for sulfated polysaccharides, which is most characteristic structure of the presence of sulfated L-fucose, are found in brown seaweed (Phaeophyceae) and echinoderms (sea urchins and sea cucumbers). These polysaccharides have been reported to possess anticoagulant, antitumor, anti-viral, anti-proliferative and anti-inflammatory activities. Therefore, in the present study was evaluate the effect of the fucan from the brown seaweed Spatoglossum schroederii in models of peritonitis and non-septic shock induced by zymosan, as well as in a murine model of colitis induces by DSS. So, the mice treatment by intravenous route with the fucan was able to reduce the exudate formation and the cell migration in the model of acute peritonitis induced by zymosan during the kinetic of 6, 24 and 48 hours. Similarly, in the model of non-septic shock induced by zymosan the fucan demonstrated a protector effect to inhibited the cellular migration to the peritoneo, to decrease the levels of IL-6 in the serum and in the peritoneal exudate, to attenuate the lose of weight in the mice; beside to reduce the serum levels of hepatic transaminases and as well as the liver injury. In the model of murine colitis, the treatment with the fucan reduced the lose of weight of the animals, decreased the levels of IL-17 and IFN- produced in the gut and decrease the intestinal lesion induced by DSS. In conclusion, the fucan used in this study presented a significant protector effect in the murine models of inflammation
Resumo:
Fucana é um termo que define uma família de hetero e homopolissacarídeos que contem L-fucose em sua estrutura. Neste trabalho uma hererofucan F 2,0v da alga Dictyota menstrualis foi avaliada como agente antinociceptivo e antiinflamatório. A fucana F 2,0v inibiu a migração de leucócitos em até 100% (20.0 mg/kg) para a cavidade peritoneal após estimulo químico, porém, não alterou a expressão das interleucinas IL-1β, IL-6 e de TNF-α. Com relação a sensação dolorosa a F 2,0v (20.0 mg/kg) possui atividade antinociceptiva periférica com potência semelhante à dipirona. Por outro lado não apresentou efeito no teste da placa quente. Análises de microscopia confocal e citometria de fluxo mostram que a F 2,0v se liga a superfície dos leucócitos. O conjunto de resultados apresentados pela fucana F 2,0v sugerem que o mecanismo de ação está relacionado com sua capacidade de inibir a migração de leucócitos para o local da injúria tecidual. Em resumo os dados mostram que F 2,0v apresenta grande potencial como composto antinociceptivo e antiinflamatório. Estudos futuros serão realizados para caracterizar melhor o mecanismo de ação da F 2,0v
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory
Resumo:
The Iota, Kappa and Lambda commercial carrageenans are rarely pure and normally contain varying amounts of the other types of carrageenans. The exact amount of impurity depends on the seaweed source and extraction procedure. Then, different analysis methods have been applied for determination of the main constituents of carrageenans because these three carrageenans are extensively used in food, cosmetic and pharmaceutical industry. The electrophoresis of these compounds proved that the carrageenans are constituted by sulfated polysaccharides. These compounds were characterized by colorimetric methods and was observed that the Lambda carrageenan shown the greater value (33.38%) of sulfate. These polymers were examined by means of 13C NMR spectroscopy and infrared spectra. The polysaccharides consisted mainly of units alternating of sulfated galactoses and anhydrogalactoses. The aim of the study was also to test the inflammatory action of these different polysaccharides. A suitable model of inflammation is acute sterile inflammation of the rat hind limb induced by carrageenan. Paw edema was induced by injecting carrageenans (κ, ι and λ) in saline into the hind paw of a male Wistar rats (175–200 g). The pathway to acute inflammation by carrageenan (kappa, iota and lambda) were expressed as time-edema dependence and measured by paw edema volume. For this purpose, was used an apparatus (pakymeter), which makes it possible to measure the inflammation (swelling of the rat foot) with sufficient accuracy. The results showed that κ-carrageenan (1%) have an edema of 3.7 mm and the paw edema increase was time and dose dependent; the ι-carrageenan (0.2%) caused an edema of 4 mm and the λ-carrageenan (1%) caused an edema of 3.6 mm. Other model was used in this study based in the inflammation of pleura for comparatives studies. Injection of carrageenans into the pleural cavity of rat induced an acute inflammatory response characterized by fluid accumulation in the pleural cavity, a large number of neutrophils and raised NO production. The levels of NO were measured by Griess reactive. The ι-carrageenan caused the greater inflammation, because it has high concentration of nitrite/nitrate (63.478 nmoles/rat), exudato volume (1.52 ml) and PMNs (4902 x 103 cells). Quantitative evaluation of inflammations of rats is a useful and important parameter for the evaluation of the efficacy of anti-inflammatory drugs
Resumo:
Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity
Resumo:
The fucoidan from Fucus vesiculosus is known for having diverse biological properties. This study analyzed the therapeutic action of populations of commercial fucoidan (F. vesiculosus) on zymosan-induced arthritis. Three populations of fucoidan were obtained after acetone fractionation; these were denominated F1 (52.3%), F2 (36.7%) and F3 (10.7%). Chemical analyses showed that F1 contained the largest amount of sulfate ion. The electrophoretic profile shows that the commercial or total fucoidan (TF), different from the other fucoidans and from glycosaminoglycan patterns, is quite polydisperse, which indicates that it is composed of a mixture of sulfate polysaccharides. On the other hand, the fucoidans obtained from TF showed only an electrophoretic band with much lower polydispersion than that observed for TF. Fucoidan F2 showed a migration between fucoidans F1 and F3. Owing to the small amount of mass obtained from F3, we used only fucoidans F1 and F2 in the induced arthritis tests. After 1 hour of induction, we administered F1 or F2 (10, 25 and 50 mg/kg i.p.) or diclofenac sodium (10 mg/kg i.p.) or lumiracoxib (5 mg/kg o.a.) or L-NAME (30 mg/kg i.p.). After 6 hours, we performed analyses of cell influx and nitrite levels in addition to histopathological analysis. Fucoidans F1 and F2 were more potent both in decreasing the number of leukocytes and the amount of nitric oxide found in the synovial fluid. This indicates that the anti-inflammatory mechanism of these fucoidans is not only related to selectin block, but also to nitric oxide synthesis inhibition
Resumo:
Studies made with polysaccharides of seaweed have demonstrated that these present important biological and pharmacological activities. These composites had presented "scavenging" activity of free radicals, which is important in the mediation of the inflammatory process and in the pathology of diverse disease. Recently, this "scavenging" property has taken some researches to evaluate the antioxidant capacity from various polysaccharides. Considering the limited research with polysaccharides and knowing its largely employed by the pharmaceutical and foodstuffs industries, we have objective to verify the actions from fucans and galactans as antioxidants. The fucans are found in brown seaweed and the galactans (carrageenans) in red seaweed. The fucans were obtained from seaweed Padina gymnospora (F0.5 e F1.1 fractions), common to our coastline and one another fucan, fucoidan, was of origin commercial and extracted from seaweed Fucus vesiculosus. The λ, κ e ι carrageenans were also of origin commercial. The antioxidant activities were tested in superoxide and hydroxyl systems to generated free radicals and for the inhibition of the lipid peroxidation. The results obtained to inhibition of formation the superoxide radicals demonstrated that all polysaccharides presented scavenging activity of superoxide radicals. The fucoidan, F0.5 and F1.1 fractions presented IC50 of 0.058; 0.243 and 0.243 mg/mL, respectively, while IC50 of the λ, κ and ι carrageenans were 0.046; 0.112 and 0.332 mg/mL, respectively. The results to inhibition of formation the hydroxyl radicals demonstrated that all sample had low effect in the inhibition of the formation of these radicals, except the F0.5. For these radicals the IC50 were 0.157 and 0.353 mg/mL to the fucoidan and F1.1, respectively and 0.357; 0.335 and 0.281 mg/mL to λ, κ and ι carrageenans, respectively. All the samples were capacity to inhibition the peroxidation, it present the IC50 of 1.250; 2.753 and 2.341 mg/mL to fucoidan, F0.5 and F1.1, respectively. Already the λ, κ and ι carrageenans presented the IC50 of 2.697; 0.323 and 0.830 mg/mL, respectively. With these findings, we conclude that polysaccharides used in this study presented activity antioxidant, and that fucoidan and the λ carrageenan show a significant "scavenging" activity for the radicals superoxide and the κ carrageenan a significant inhibitory activity for the lipid peroxidation
Resumo:
Studies made with polysaccharides of seaweed have demonstrated that these present important biological and pharmacological activities. These composites had presented "scavenging" activity of free radicals, which is important in the mediation of the inflammatory process and in the pathology of diverse disease. Recently, this "scavenging" property has taken some researches to evaluate the antioxidant capacity from various polysaccharides. Considering the limited research with polysaccharides and knowing its largely employed by the pharmaceutical and foodstuffs industries, we have objective to verify the actions from fucans and galactans as antioxidants. The fucans are found in brown seaweed and the galactans (carrageenans) in red seaweed. The fucans were obtained from seaweed Padina gymnospora (F0.5 e F1.1 fractions), common to our coastline and one another fucan, fucoidan, was of origin commercial and extracted from seaweed Fucus vesiculosus. The λ, κ e ι carrageenans were also of origin commercial. The antioxidant activities were tested in superoxide and hydroxyl systems to generated free radicals and for the inhibition of the lipid peroxidation. The results obtained to inhibition of formation the superoxide radicals demonstrated that all polysaccharides presented scavenging activity of superoxide radicals. The fucoidan, F0.5 and F1.1 fractions presented IC50 of 0.058; 0.243 and 0.243 mg/mL, respectively, while IC50 of the λ, κ and ι carrageenans were 0.046; 0.112 and 0.332 mg/mL, respectively. The results to inhibition of formation the hydroxyl radicals demonstrated that all sample had low effect in the inhibition of the formation of these radicals, except the F0.5. For these radicals the IC50 were 0.157 and 0.353 mg/mL to the fucoidan and F1.1, respectively and 0.357; 0.335 and 0.281 mg/mL to λ, κ and ι carrageenans, respectively. All the samples were capacity to inhibition the peroxidation, it present the IC50 of 1.250; 2.753 and 2.341 mg/mL to fucoidan, F0.5 and F1.1, respectively. Already the λ, κ and ι carrageenans presented the IC50 of 2.697; 0.323 and 0.830 mg/mL, respectively. With these findings, we conclude that polysaccharides used in this study presented activity antioxidant, and that fucoidan and the λ carrageenan show a significant "scavenging" activity for the radicals superoxide and the κ carrageenan a significant inhibitory activity for the lipid peroxidation
Resumo:
In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.
Resumo:
The use of medicinal plants to cure and treat various diseases is a common practice in the world and in Brazil. In several regions of the Brazil´s Northeast, the cactus Cereus jamacaru, known as mandacaru, is used popularly as a treatment to many diseases, including those related to heart respiratory diseases, gastric ulcers, scurvy, and kidney diseases. However, there is a scarcity in the scientific literature that proves scientifically the popular application of this cactus. Like other plants, Cereus jamacaru synthesizes several potentially bioactive molecules, like as polysaccharides. In this work, three polysaccharides-rich aqueous extracts, MCA80, MPM and MCP60, were obtained from this plant and analyzed chemically, as well as their cytotoxic and antioxidant potential. The data showed that all extracts consist mainly of polysaccharides (89.42 to 95.76%), but also protein (> 2%) and phenolic (3 to 8.87%) contaminants were detected. All extracts are rich in galactose, glucose and mannose. In addition, glucuronic acid was found in MCA80 and MCP60. The extracts showed total antioxidant capacity ranged from 55.21 to 68.13 of ascorbic acid equivalents (AAE). Besides, they exhibited reducer power and cupric chelation in a dose-dependent manner. None of the extracts inhibited the MTT reduction in the presence of prostate tumor cells (PC-3). However, MCP60 was the most effective extract by preventing the reduction of MTT by about 80% in the presence of cells 786. Nuclear fragmentation tests showed that this extract induces cell death. The data indicated that mandacaru synthesizes bioactive polysaccharides with potential as antioxidant and antitumor agents. For future studies, it is intended to purify and characterize these polysaccharides and its antioxidant and antitumor mechanisms