47 resultados para Capacidade de difusão pulmonar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive production of tilápias, in cages or net tanks, has been proposed as an alternative to increase fish production, that would generate income and offer animal protein in different tropical and subtropical countries. However, this system of production enriches the aquatic environment with nutrients, principally nitrogen and phosphor derived from the dejections of the metabolism of food and eventual food surpluses consumed by the fishes; the alimentation of the fishes in this production modality is dependent on fish food. The emission of these nutritions in levels above the limit that the system is capable metabolize can provoke a phenomenon called eutrofization, putting in risk the quality of water for public and for fish production activities. In this context the work had as a goal to evaluate the trófico state of the four reservoirs for intensive production of tilapias in net-tanks, in other words, he maximum fish production that the reservoirs are able to hold, keeping the desired quantity of nutrient concentrations in water for public use. The results of the four ecosystems in the Boqueirão de Parelhas reservoir showed that it s possible to have an intensive production of tilapias in net tanks, in this environment the annual average concentration of phosphor, was below the considered critical limits to deflagrate the process of eutrofization in semi-arid regions. The carrying capacity of the Boqueirão de Parelhas reservoir depends on the conversion of the feeding facts and phosphor content in the food but it should vary between 100 and 300 tons per year over a variation in the conversion feeding factor of 1,7 to 2,0:1 and a variation in the P in the food of 0,7 to 0,9%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations