116 resultados para Biodiversidade
Resumo:
Toxoplasmosis, provoked by the intracellular parasite Toxoplasma gondii, is one of the most prevalent parasitoses in the world. In humans, transmission occurs by three evolutionary forms of the parasite: oocysts, tissue cysts and tachyzoites. Wild and domestic felines are definitive hosts. The ocular form of toxoplasmosis can be of congenital origin with early or late clinical manifestations, or acquired after birth. T. gondii is considered the main culprit for most cases of infectious uveitis. This study aimed at assessing ocular toxoplasmosis, relating it to factors associated to the patient s lifestyle and describing the epidemic-serological and clinical profile of affected individuals. A cross-sectional study was conducted with a population of 159 patients. Univariate analysis (odds ratio) was used to evaluate the data, with a confidence interval of 95% and p-value < 0.05. A prevalence of 4% of ocular toxoplasmosis was observed in the population of patients treated at an ophthalmological clinic. Of patients directly examined by immunoenzymatic assay (MEIA-AxSYM®- Microparticle Enzyme Immune Assay), considering only uveitis, a frequency of anti-T. gondii of 73%, most of whom exhibited titulation between 40-99 UI IgG/mL. With respect to location of ocular lesions, bilaterality was observed in 57% of patients assessed by the ophthalmoscopy technique. When compared with the results of an active search of medical records, a similarity in ocular toxoplasmosis (74%) and bilateral lesion location (55%) was observed. Type I lesion was the most frequent type observed, with intraocular disposition in the macula. An epidemiological survey revealed that direct contact with cats; consuming raw or poorly cooked meat and direct contact with the soil were significantly associated with greater likelihood of acquiring ocular toxoplasmosis. Sample characterization in relation to age range was significant for patients between 31 and 40 years [χ², chi-square test (p = 0.04)], but population traits such as schooling, sanitary district, and monthly income were not significant. Results confirm that ocular toxoplasmosis is widely distributed in the metropolitan area of Natal, Brazil, with significant prevalence of ocular lesions provoked by T.gondii. It is suggested that sanitary authorities exert greater control in order to minimize the risk of toxoplasmic infection, mainly in pregnant women.
Resumo:
In this work we analyze the skin bioimpedance statistical distribution. We focus on the study of two distinct samples: the statistics of impedance of several points in the skin of a single individual and the statistics over a population (many individuals) but in a single skin point. The impedance data was obtained from the literature (Pearson, 2007). Using the Shapiro-Wilk test and the assymmetry test we conclude that the impedance of a population is better described by an assymetric and non-normal distribution. On the other side, the data concerning the individual impedance seems to follow a normal distribution. We have performed a goodnes of fitting test and the better distribution to fit the data of a population is the log-normal distribution. It is interesting to note that our result for skin impedance is in simtony with body impedance from the literature of electrical engeneering. Our results have an impact over the statistical planning and modelling of skin impedance experiments. Special attention we should drive to the treatment of outliers in this kind of dataset. The results of this work are important in the general discussion of low impedance of points of acupuncture and also in the problem of skin biopotentials used in equipments like the Electrodermal Screen Tests.
Resumo:
Resistance of Plasmodium falciparum to the usual antimalarials, as well as their adverse effects and high cost, has led to the search of new drugs against malaria. Several of these have been developed from medicinal plants based on ethnopharmacology, including the most widely used antimalarials today: quinine and artemisinin. In the present study schizonticide activity of extracts and fractions of a number of medicinal plants from the Caatinga and Amazon biomes were assessed based on ethnopharmacological and chemosystematic information. These included Ximenia americana, Maytenus rigida, Sideroxylon obtusifolium, Stryphnodendro coriaceum, Bowdichia virgiliodes, Schinopis brasiliensis and Picrolemma sprucei, the last, an Amazon species. Antimalarial tests of blood schizonticides were conducted in Swiss mice infected with P. berghei and in vitro against P. falciparum. In vitro cytotoxicity studies were carried out using HeLa, CHO, 3T3, Raw and HEPG2 cell lines. Except for X. americana, all species exhibited in vivo or in vitro antimalarial activity, inhibiting parasitic growth by up to 79%. Extracts exhibited moderate toxicity with dosedependent kinetics. In this sense, ethnopharmacological and chemosystematic approaches were shown to be useful and promising tools in the search of new drugs. These findings represent a significant contribution to scientific knowledge of the antimalarial potential of Brazilian flora, thereby opening perspectives for the development of new antimalarials
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
The human respiratory system was so designed that would allow efficient ventilation, regardless of variations in the external environment that may hinder the act of breathing, such an act involves dozens of variables, among them we find the respiratory depression, which is nothing more than respiratory muscle strength. The pressures are widely used in several cases: Neuro-muscular; evolution of pulmonary dysfunction and a predictor for discontinuation of mechanical ventilation. Therefore it was proposed to carry out evaluations of these respiratory pressures for children and adolescents aged 10 to 16 years and propose a predictive equation that involves the anthropometric variables age (A, years), body mass (BM, kilograms) and height (H, meters) with maximal respiratory pressures (maximum inspiratory and expiratory pressure). Evaluations were performed in this age group of students in public and private schools of the Grande Natal , measurements were performed using the analogue manometer, were children and adolescents and their parents gave informed consent. 517 samples were taken, and 250 for males (M), 255 for females (F) and 12 were excluded according to our exclusion criteria. The sample was subdivided into three age groups (10-11, 12-13 and 14 to 16 years old). It was found through the student s t test (p ≤ 0.05) for all variables studied, children and male adolescents had higher means than females, except for the MC. For the correlation between the variables found significant correlation (p <0.05) among all the variables when analyzed as pairs except between MIP and height for females. The development of predictive equations (for p ≤ 0.05) based on three types of strategies adopted were restricted to two association between anthropometric variables isolated, resulting in: for males: MIP = -32.29 + (-2.11*A) + (-0.52*BM), MIP = 9.99 + (-0.36*BM) + (-49.40*H); MEP = 18.54 + 3.53*A + 0, 42*BM, MEP = -33.37 + 2.78*A + 52.18* H, MEP = -17.39 + 0.33*BM + 55.04*H; and, for females we find: MEP = 24.32 + 2.59 * A + 0.24*BM
Resumo:
The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.
Resumo:
Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation
Resumo:
Malaria is a major parasitic disease worldwide, accounting for about 500 million cases and causing 2 million to 3 million deaths annually. Four species are responsible for transmitting this disease to humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. The parasite resistance to antimalarial drugs and the usual limitations of the vector control implications are contributing to the spread of the disease. The most of significant advances in the search for new antimalarial drugs is based on natural components, the main ones being currently used antimalarial drugs derived from plants. Research on natural products of marine origin (particularly algae) show that some species possess antiplasmodial activity. Knowing that the coast of Rio Grande do Norte is home to several species of algae, the present study was to evaluate, for the first time, the antimalarial activity of ethanolic extracts of seaweed Spatoglossum schroederi, Gracilaria birdiae and Udotea flabellum against Plasmodium falciparum 3D7 strain tests and in vitro using the murine model (Plasmodium berghei) for evaluation in vivo. These species were ground, macerated with ethanol for 24 hours and the extracts concentrated in rotaevaporador (45 ° C ± 5 ° C). For in vitro tests, the extracts were diluted and tested at concentrations between 100 and 1.56 μg/ml (seven concentrations in triplicate), in order to obtain IC50 of each extract. The cytotoxicity tests with macrophages and BGM were performed using the MTT colorimetric assay. BGM macrophages and cells were distributed in 96 wells per plate (1x 105 to macrophages and 1x104 cells per well for BGM) and incubated for 24h at 37 ° C. The ethanol extracts were diluted and tested at concentrations of 100 to 1,56 μg/ml (seven concentrations in triplicate). After periods of 24 hours of incubation with the extracts, 100 μg of MTT was added to each well, and 3 hours elapsed, the supernatant was removed and added 200 μl of DMSO in each well. The absorbance of each well was obtained by reading on a spectrophotometer at 570 nm filter. To evaluate the acute toxicity in vivo, Swiss mice received a single dose (oral) 2000 mg/kg/animal of each extract tested. The parameters of acute toxicity were observed for 8 days. For in vivo tests, Swiss mice were inoculated with 1x105 erythrocytes infected with P. berghei. The treatment was given first to fourth day after infection with 0.2 ml of the extracts in doses of 1000 and 500 mg//g animal. The negative control group received 0.2 ml of 2% Tween-20, whereas the positive control group received sub-dose of chloroquine (5 mg/kg/animal). The assessment of antimalarial activity was done by suppressing suppressing the parasitemia at 5 and 7 days after infection. The growth inhibition of parasites was determined relative to negative control (% inhibition = parasitaemia in control - parasitemia in sample / parasitemia control x 100), the mortality of animals was monitored daily for 30 days The results showed that algae Spatoglossum schroederi and Udotea flabellum showed antimalarial activity in vitro, with reduced parasitemia of 70.54% and 54, respectively. The extracts of the three algae tested showed moderate to high cytotoxicity. Algae S. schroederi and U. flabellum were active against P. berghei only at doses of 500 mg / kg with reduction ranging from 54.58 to 52.65% for the fifth day and from 32.24 to 47.34% for the seventh day, respectively. No toxicity was observed in vivo at the dose tested, over the 8 days of observation. Although preliminary data, the bioactive components in those possible seaweed may be promising for the development of new anti-malarial drugs
Resumo:
Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well
Resumo:
Toxoplasmosis, a benign disease in normal healthy individuals, can have serious effects in pregnant women and immunocompromised patients. It is a parasitic disease caused by Toxoplasma gondii (Tg), an obligatory intracellular protozoan. The prophylactic and therapeutic arsenal against this parasite is very restricted. Thus, there is an ongoing search for novel drugs and therapeutic strategies. A promising alternative is a rational approach using medicinal plants. This study aimed to standardize methodologies for assessing the toxicological, antiproliferative, antioxidant, antiinflammatory and anti-Toxoplasma effects of Estragole and Thymol compounds isolated from species of plants (Lippia sidoides and Croton zenhtneri) commonly used in the Cariri region of Ceara State, Brazil. First we evaluated in vivo toxicity and conducted a pathological analysis of mice livers. In vivo antiinflammatory activity was assessed using air pouch and paw edema methods. Cytotoxicity assays were performed and antiproliferative, antioxidant and nitric oxide production analyzed. Anti-Toxoplasma activity was evaluated in a congenital experimental model with varying stages of maternal infection using the ME-49 strain and a non- congenital model by using ME-49 and RH strains. The results suggest low to moderate toxicity for both compounds. Thymol was more toxic in vivo and in vitro, having greater pathological repercussion than Estragole. The compounds were inactive for antiproliferative activity. Thymol showed better antioxidant activity, while Estragole stimulated nitric oxide production in macrophages. Both showed significant antiinflammatory activity. In non-congenital Tg infection, both compounds were active only against the ME49 strain. In congenital infection, Estragole (oral route) improved the newborn weight of infected mothers compared with untreated controls. Subcutaneous administration of the two compounds increased the weight of offspring born to infected mothers compared with untreated controls. We concluded that Estragole and Thymol exhibit important biological and anti-Toxoplasma activities. Further studies are needed to elucidate the mechanism of action of these compounds and other possible activities not investigated in the present study
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Gasteroids fungi are characterized by the basidiospores maturation inside the basidioma, from which spores liberation occurs in a passive manner. These fungi were once seen as a well definite class of Basidiomycota, but nowadays they are considered an artificial assemblage, because the organisms have independent evolutionary histories forming a polyphyletic group with a vast morphological variety. Despite their diversity, studies with this group in the tropics are incipient, and the phylogenetic relationships of the species from temperate climate remain unknown. Thus, this work aimed to elucidate the phylogenetic relationships of gasteroids fungi from the Geastrales and Phallales orders, with the inclusion of tropical and temperate species, and with these analyses suggest a systematic position of species like Aseroë floriformis and Phallus roseus, as well as to verify if the lignicolous habit can indicate parental relationship in the Geastrum genus. For this, basidiomata were collected at Atlantic rain forest areas, during the rainy season, and the specimen identification followed specific literature for gasteroid fungi. The phylogenetic analyses were performed with Maximum Parsimony and Bayesian Analysis, making use of RPB2 and 28S nuclear genes and atp6 mitochondrial gene. It could be observed on the Phallales dendogram, that Aseroë floriformis did not cluster with A. rubra, and that it has an anterior divergence from all others species of the family Clathraceae used in this analysis, assuming a basal position in the clade. Phallus roseus, which once was recognized as Itajahya, has previous divergence from the group formed by Phallus species. At the Geastrales dendogram, in the group corresponding to Geastrum genus, it could be observed that species with lignicolous habitat clustered in a clade with high support values. So, the results suggest the creation of a new genus to accommodate A. floriformis, and the revalidation of Itajahya, as well as it can be affirmed that the lignicolous habitat on the Geastrum genus in fact indicates parental relationships, and that it has arised only once at the evolutionary history of the genus
Resumo:
Fucans is a name used for sulfated polysaccharides, which is most characteristic structure of the presence of sulfated L-fucose, are found in brown seaweed (Phaeophyceae) and echinoderms (sea urchins and sea cucumbers). These polysaccharides have been reported to possess anticoagulant, antitumor, anti-viral, anti-proliferative and anti-inflammatory activities. Therefore, in the present study was evaluate the effect of the fucan from the brown seaweed Spatoglossum schroederii in models of peritonitis and non-septic shock induced by zymosan, as well as in a murine model of colitis induces by DSS. So, the mice treatment by intravenous route with the fucan was able to reduce the exudate formation and the cell migration in the model of acute peritonitis induced by zymosan during the kinetic of 6, 24 and 48 hours. Similarly, in the model of non-septic shock induced by zymosan the fucan demonstrated a protector effect to inhibited the cellular migration to the peritoneo, to decrease the levels of IL-6 in the serum and in the peritoneal exudate, to attenuate the lose of weight in the mice; beside to reduce the serum levels of hepatic transaminases and as well as the liver injury. In the model of murine colitis, the treatment with the fucan reduced the lose of weight of the animals, decreased the levels of IL-17 and IFN- produced in the gut and decrease the intestinal lesion induced by DSS. In conclusion, the fucan used in this study presented a significant protector effect in the murine models of inflammation
Resumo:
Toxoplasmosis is a zoonosis caused by Toxoplasma gondii, a protozoan that has a cosmopolitan geographic distribution and low host specificity. Usually a benign and selflimiting, infection can manifest itself in a severe systemic becoming overwhelming in fetuses and patients with immunosuppression. Domestic fowl are considered one of the most important hosts in the epidemiology of toxoplasmosis, since they are potential sources of infection for humans, in addition to playing the role of important indicators of environmental contamination by oocysts of T. gondii. We studied the prevalence of infection by the protozoan in chickens of different breeding systems mesoregions from the states of Rio Grande do Norte and Paraiba: broilers from commercial farms (200/PB) and free-range chickens of small farms (322/RN and PB). Were standardized IFAT and ELISA techniques for detecting specific antibodies in blood samples of birds, and commercial kit was used to determine the prevalence by IHAT. There was no seropositive reaction by T. gondii in the samples of broilers tested, indicating that the particularities of intensive management limit the chances of infection for these animals. Among the hens, the frequency of IgG anti-T. gondii diagnosed by the techniques of IHAT, IFAT and ELISA, respectively, were 3.73% (12/322), 37.88% (122/322) and 40.37% (130/322), for both young and adult animals. Amongst the seropositive samples by IFAT, 33 (27.05%) were positive at a dilution of 1:16, in 1:32, 31 (25.41%), in 1:64, 24 (19.67%), 15 (12.29%) in 1:128, and 19 presented titer greater than or equal to 1:256 (15.57%). The evaluation of the presence of anti-T. gondii should be careful, and reagents IHAT provided erratic results in this measure for the specie studied. This suggests the need for own standardization of the kit before the use in epidemiological studies in animal species. On the other hand, substantial agreement observed between IFAT and ELISA techniques (Kappa = 0.62) enables these methods as effective methodologies for the diagnosis of toxoplasmosis in chickens. The high prevalence of specific antibodies among poultry in the region studied attempts to the potential risk of transmission of toxoplasmosis to humans
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior