90 resultados para Anisotropías magnéticas]
Desenvolvimento de sistemas magnéticos com potencialidades terapêuticas para vetorização de fármacos
Resumo:
Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.
Resumo:
The drug targeting has been the subject of extensive studies in order to develop site-specific treatments that minimize side effects and become more effective anticancer therapy. Despite considerable interest in this class, drugs like antibiotics also have limitations, and have been neglected. Using new pharmaceutical technologies, the use of magnetic vectors appear as promising candidate for drug delivery systems in several studies. Small magnetic particles bound to the drug of interest can be modulated according to the orientation of a magnet outside the body, locating and holding in a specific site. In this work, we propose the use of High Energy Milling (HEM) for synthesis of a magnetic vector with characteristics suitable for biomedical applications by intravenous administration, and for the formation of an oxacillin-carrier complex to obtain a system for treating infections caused by Staphylococcus aureus. The results of the variation of milling time showed that the size and structural properties of the formed material change with increasing milling time, and in 60 hours we found the sample closest to the ideal conditions of the material. The vector-drug system was studied in terms of structural stability and antimicrobial activity after the milling process, which revealed the integrity of the oxacillin molecule and its bactericidal action on cultures of Staphylococcus aureus ATCC
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
Polymer particles in the nanometer range are of fundamental interest today, especially when used as carrier systems in the controlled release of drugs, cosmetics and nutraceuticals, as well as in coating materials with magnetic properties. The main objective of the present study concerns the production of submicron particles of poly (methyl methacrylate) (PMMA) by crystallization of a polymer solution by thermally controlled cooling. In this work, PMMA solutions in ethanol and 1-propanol were prepared at different concentrations (1% to 5% by weight) and crystallized at different cooling rates (0.2 to 0.8 ° C / min) controlled linearly. Analysis of particle size distribution (DLS / CILAS) and scanning electron microscopy (SEM) were performed in order to evaluate the morphological characteristics of the produced particles. The results demonstrated that it is possible to obtain submicron polymer perfectly spherical particles using the technique discussed in this study. It was also observed that, depending on the cooling rate and the concentration of the polymer solution, it is possible to achieve high yield in the formation of submicron particles. In addition, preliminary tests were performed in order to verify the ability of this technique to form particulated carrier material with magnetic properties. The results showed that the developed technique can be an interesting alternative to obtain polymer particles with magnetic properties
Resumo:
The purpose of this study is to describe the implementation of the Low Energy Electron Diffaction (LEED) technique in the Laboratory of Magnetic Nanostructures and Semiconductors of the Department of Theoretical and Experimental Physics of the Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil. During this work experimental apparatus were implemented for a complete LEED set-up. A new vacuum system was also set up. This was composed of a mechanical pump, turbomolecular pump and ionic pump for ultra-high vacuum and their respective pressure measurement sensors (Pirani gauge for low vacuum measures and the wide range gauge -WRG); ion cannon maintenance, which is basically mini-sputtering, whose function is sample cleaning; and set-up, maintenance and handling of the quadrupole mass spectrometer, whose main purpose is to investigate gas contamination inside the ultra-high vacuum chamber. It should be pointed out that the main contribution of this Master's thesis was the set-up of the sample heating system; that is, a new sample holder. In addition to the function of sample holder and heater, it was necessary to implement the function of sustaining the ultra-high vacuum environment. This set of actions is essential for the complete functioning of the LEED technique
Resumo:
We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications
Resumo:
This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this work, we investigated the magnetic properties of a monocrystalline Fe thin film and of Fe(80 Å)/Cr(t)/Fe(80 Å) tri-layers, with the nonmagnetic metallic Cr spacer layer thickness varying between 9 Å < t < 40 Å. The samples were deposited by the DC Sputtering on Magnesium Oxide (MgO) substrates, with (100) crystal orientation. For this investigation, experimental magneto-optical Kerr effect (MOKE) magnetometry and ferromagnetic resonance (FMR) techniques were employeed. In this case, these techniques allowed us to study the static and dynamical magnetization properties of our tri-layers. The experimental results were interpreted based on the phenomenological model that takes into account the relevant energy terms to the magnetic free energy to describe the system behavior. In the case of the monocrystalline Fe film, we performed an analytical discussion on the magnetization curves and developed a numerical simulation based on the Stoner-Wohlfarth model, that enables the numerical adjustment of the experimental magnetization curves and obtainment of the anisotropy field values. On the other hand, for the tri-layers, we analyzed the existence of bilinear and biquadratic couplings between the magnetizations of adjacent ferromagnetic layers from measurements of magnetization curves. With the FMR fields and line width angular dependencies, information on the anisotropy in three layers was obtained and the effects of different magnetic relaxation mechanisms were evidenced. It was also possible to observe the dependence of the epitaxy of the multilayers with growth and sputtering parameters. Additionally it was developed the technique of AC magnetic susceptibility in order to obtain further information during the investigation of magnetic thin films
Resumo:
We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing
Resumo:
n this master s dissertation a Kerr Magneto Optic s magnetometer effect was set up to do characterization of samples type films fine and ultra thin, these samples will be grown after the implementation of the sputtering technique at the magnetism laboratory of of this department. In this work a cooled electromagnet was also built the water and that it reaches close values to 10kOe with a gap of 22 mm including an area of uniform field of 25mm of diameter. The first chapter treats of the construction of this electromagnet from its dimensioning to the operation tests that involve measures of reached maximum field and temperature of the reels when operated during one hour. The second chapter is dedicated to the revision of the magnetism and the magnetization processes as well as it presents a theoretical base regarding the magnetic energies found in films and magnetic multilayer. In the sequence, the third chapter, is especially dedicated the description of the effects magneto opticians the effect kerr in the longitudinal, traverse and polar configurations, using for so much only the classic approach of the electromagnetism and the coefficients of Fresnel. Distinguished the two areas of observation of the effect regarding thickness of the film. The constructive aspects of the experimental apparatus as well as the details of its operation are explained at the room surrender, also presenting the preliminary results of the measures made in one serializes of permalloy films and concluding with the results of the characterization of the first films of iron and permalloy grown here at the theoretical and experimental physics department at UFRN
Resumo:
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )