166 resultados para Vazão


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water injection is the most widely used method for supplementary recovery in many oil fields due to various reasons, like the fact that water is an effective displacing agent of low viscosity oils, the water injection projects are relatively simple to establish and the water availability at a relatively low cost. For design of water injection projects is necessary to do reservoir studies in order to define the various parameters needed to increase the effectiveness of the method. For this kind of study can be used several mathematical models classified into two general categories: analytical or numerical. The present work aims to do a comparative analysis between the results presented by flow lines simulator and conventional finite differences simulator; both types of simulators are based on numerical methods designed to model light oil reservoirs subjected to water injection. Therefore, it was defined two reservoir models: the first one was a heterogeneous model whose petrophysical properties vary along the reservoir and the other one was created using average petrophysical properties obtained from the first model. Comparisons were done considering that the results of these two models were always in the same operational conditions. Then some rock and fluid parameters have been changed in both models and again the results were compared. From the factorial design, that was done to study the sensitivity analysis of reservoir parameters, a few cases were chosen to study the role of water injection rate and the vertical position of wells perforations in production forecast. It was observed that the results from the two simulators are quite similar in most of the cases; differences were found only in those cases where there was an increase in gas solubility ratio of the model. Thus, it was concluded that in flow simulation of reservoirs analogous of those now studied, mainly when the gas solubility ratio is low, the conventional finite differences simulator may be replaced by flow lines simulator the production forecast is compatible but the computational processing time is lower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world has many types of oil that have a range of values of density and viscosity, these are characteristics to identify whether an oil is light, heavy or even ultraheavy. The occurrence of heavy oil has increased significantly and pointing to a need for greater investment in the exploitation of deposits and therefore new methods to recover that oil. There are economic forecasts that by 2025, the heavy oil will be the main source of fossil energy in the world. One such method is the use of solvent vaporized VAPEX which is known as a recovery method which consists of two horizontal wells parallel to each other, with a gun and another producer, which uses as an injection solvent that is vaporized in order to reduce the viscosity of oil or bitumen, facilitating the flow to the producing well. This method was proposed by Dr. Roger Butler, in 1991. The importance of this study is to analyze how the influence some operational reservoir and parameters are important in the process VAPEX, such as accumulation of oil produced in the recovery factor in flow injection and production rate. Parameters such as flow injection, spacing between wells, type of solvent to be injected, vertical permeability and oil viscosity were addressed in this study. The results showed that the oil viscosity is the parameter that showed statistically significant influence, then the choice of Heptane solvent to be injected showed a greater recovery of oil compared to other solvents chosen, considering the spacing between the wells was shown that for a greater distance between the wells to produce more oil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Como os recursos de hidrocarbonetos convencionais estão se esgotando, a crescente demanda mundial por energia impulsiona a indústria do petróleo para desenvolver mais reservatórios não convencionais. Os recursos mundiais de betume e óleo pesado são estimados em 5,6 trilhões de barris, dos quais 80% estão localizados na Venezuela, Canadá e EUA. Um dos métodos para explorar estes hidrocarbonetos é o processo de drenagem gravitacional assistido com injeção de vapor e solvente (ES-SAGD Expanding Solvent Steam Assisted Gravity Drainage). Neste processo são utilizados dois poços horizontais paralelos e situados verticalmente um acima do outro, um produtor na base do reservatório e um injetor de vapor e solvente no topo do reservatório. Este processo é composto por um método térmico (injeção de vapor) e um método miscível (injeção de solvente) com a finalidade de causar a redução das tensões interfaciais e da viscosidade do óleo ou betume. O objetivo deste estudo é analisar a sensibilidade de alguns parâmetros operacionais, tais como: tipo de solvente injetado, qualidade do vapor, distância vertical entre os poços, porcentagem de solvente injetado e vazão de injeção de vapor sobre o fator de recuperação para 5, 10 e 15 anos. Os estudos foram realizados através de simulações concretizadas no módulo STARS (Steam Thermal, and Advanced Processes Reservoir Simulator) do programa da CMG (Computer Modelling Group), versão 2010.10, onde as interações entre os parâmetros operacionais, estudados em um modelo homogêneo com características de reservatórios semelhantes aos encontrados no Nordeste Brasileiro, foram observadas. Os resultados obtidos neste estudo mostraram que os melhores fatores de recuperação ocorreram para níveis máximos do percentual de solvente injetado e da distância vertical entre os poços. Observou-se também que o processo será rentável dependendo do tipo e do valor do solvente injetado

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to obtain a low-cost virtual sensor to estimate the quality of LPG. For the acquisition of data from a distillation tower, software HYSYS ® was used to simulate chemical processes. These data will be used for training and validation of an Artificial Neural Network (ANN). This network will aim to estimate from available simulated variables such as temperature, pressure and discharge flow of a distillation tower, the mole fraction of pentane present in LPG. Thus, allowing a better control of product quality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As rochas carbonáticas ocupam, numa visão global, um expressivo volume da crosta terrestre. De maneira geral, pode-se dizer que essas rochas estão presentes nas diversas unidades litoestatigráficas da Terra. Os reservatórios carbonáticos são reservas naturalmente fraturadas que exigem uma abordagem diferenciada na modelagem em programas de simulação numérica. Os modelos de dupla porosidade são descritos por funções de tranferências que modelam o fluxo de óleo entre matriz e fraturas. Em um reservatório carbonático naturalmente fraturado o sistema de fraturas é determinante no escoamento de fluidos dentro da reserva. Os maiores reservatórios carbonáticos do mundo estão situados no Oriente Médio e na América do Norte. As maiores reservas de óleo brasileiras encontradas neste tipo de reservatório estão localizadas nos campos do Pré-Sal. No Pré-Sal, um volume significativo de dióxido de carbono é produzido juntamente com o óleo. A disponibilidade de um volume consideravél de dióxido de carbono derivado da produção de óleo no Pré-Sal favorece a utilização dos processos de EOR (Enhanced Oil Recovery) por injeção de gás. O processo de injeção de dióxido de carbono vem sendo utilizado em uma grande quantidade de projetos pelo mundo. A afinidade existente entre o óleo e o dióxido de carbono causa uma frente miscível entre as duas fases causando inchamento e vaporização do óleo dentro do reservatório. Para o estudo, foi utilizado um modelo base de reservatório de dupla-porosidade, desenvolvido pela CMG para o 6° Projeto de Soluções Comparativas da SPE, que modela sistemas de fraturas e de matriz e a tranferência de massa fluida entre elas, características de reservatórios naturalmente fraturados. Foi feita uma análise da injeção de diferentes vazões de dióxido de carbono no modelo base e em modelos semelhantes, com aumento e redução de 5 e 0.5 pontos nas propriedades de porosidade e permeabilidade da matriz, respectivamente, tendo a produção de óleo como resultado. A injeção de 25 milhões de pés cúbicos por dia de CO2 foi a vazão que obteve a melhor fator de recuperação

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After the decline of production from natural energy of the reservoir, the methods of enhanced oil recovery, which methods result from the application of special processes such as chemical injection, miscible gases, thermal and others can be applied. The advanced recovery method with alternating - CO2 injection WAG uses the injection of water and gas, normally miscible that will come in contact with the stock oil. In Brazil with the discovery of pre-salt layer that gas gained prominence. The amount of CO2 present in the oil produced in the pre-salt layer, as well as some reservoirs is one of the challenges to be overcome in relation to sustainable production once this gas needs to be processed in some way. Many targets for CO2 are proposed by researchers to describe some alternatives to the use of CO2 gas produced such as enhanced recovery, storage depleted fields, salt caverns storage and marketing of CO2 even in plants. The largest oil discoveries in Brazil have recently been made by Petrobras in the pre -salt layer located between the states of Santa Catarina and Espírito Santo, where he met large volumes of light oil with a density of approximately 28 ° API, low acidity and low sulfur content. This oil that has a large amount of dissolved CO2 and thus a pioneering solution for the fate of this gas comes with an advanced recovery. The objective of this research is to analyze which parameters had the greatest influence on the enhanced recovery process. The simulations were performed using the "GEM" module of the Computer Modelling Group, with the aim of studying the advanced recovery method in question. For this work, semi - synthetic models were used with reservoir and fluid data that can be extrapolated to practical situations in the Brazilian Northeast. The results showed the influence of the alternating injection of water and gas on the recovery factor and flow rate of oil production process, when compared to primary recovery and continuous water injection or continuous gas injection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant fraction of the hydrocarbon reserves in the world is formed by heavy oils. From the thermal methods used to recovery these resources, Steamflooding has been one of the main economically viable alternatives. In Brazil, this technology is widely used by Petrobras in Northeast fields. Latent heat carried by steam heats the oil in the reservoir, reducing its viscosity and facilitating the production. In the last years, an alternative more and more used by the oil industry to increase the efficiency of this mechanism has been the addition of solvents. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a low viscosity zone between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method and investigate its applicability in reservoirs with properties similar to those found in Potiguar Basin, a numerical study was done to analyze the influence of some operational parameters (steam injection rate, injected solvent volume and solvent type) on oil recovery. Simulations were performed in STARS ("Steam, Thermal, and Advanced Processes Reservoir Simulator"), a CMG ("Computer Modelling Group") program, version 2009.10. It was found that solvents addition to the injected steam not only anticipated the heated oil bank arrival to the producer well, but also increased the oil recovery. Lower cold water equivalent volumes were required to achieve the same oil recoveries from the models that injected only steam. Furthermore, much of the injected solvent was produced with the oil from the reservoir