90 resultados para Sistema operacional de tempo real


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a hardware-software architecture for controlling the autonomous mobile robot Kapeck. The hardware of the robot is composed of a set of sensors and actuators organized in a CAN bus. Two embedded computers and eigth microcontroller based boards are used in the system. One of the computers hosts the vision system, due to the significant processing needs of this kind of system. The other computer is used to coordinate and access the CAN bus and to accomplish the other activities of the robot. The microcontroller-based boards are used with the sensors and actuators. The robot has this distributed configuration in order to exhibit a good real-time behavior, where the response time and the temporal predictability of the system is important. We adopted the hybrid deliberative-reactive paradigm in the proposed architecture to conciliate the reactive behavior of the sensors-actuators net and the deliberative activities required to accomplish more complex tasks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual attention is a very important task in autonomous robotics, but, because of its complexity, the processing time required is significant. We propose an architecture for feature selection using foveated images that is guided by visual attention tasks and that reduces the processing time required to perform these tasks. Our system can be applied in bottom-up or top-down visual attention. The foveated model determines which scales are to be used on the feature extraction algorithm. The system is able to discard features that are not extremely necessary for the tasks, thus, reducing the processing time. If the fovea is correctly placed, then it is possible to reduce the processing time without compromising the quality of the tasks outputs. The distance of the fovea from the object is also analyzed. If the visual system loses the tracking in top-down attention, basic strategies of fovea placement can be applied. Experiments have shown that it is possible to reduce up to 60% the processing time with this approach. To validate the method, we tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one of the most efficient approaches for feature extraction. With the proposed architecture, we can accomplish real time requirements of robotics vision, mainly to be applied in autonomous robotics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a proposal for a voltage and frequency control system for a wind power induction generator. It has been developed na experimental structure composes basically by a three phase induction machine, a three phase capacitor and a reactive static Power compensator controlled by histeresys. lt has been developed control algorithms using conventional methods (Pl control) and linguistic methods (using concepts of logic and fuzzy control), to compare their performances in the variable speed generator system. The control loop was projected using the ADJDA PCL 818 model board into a Pentium 200 MHz compu ter. The induction generator mathematical model was studied throught Park transformation. It has been realized simulations in the Pspice@ software, to verify the system characteristics in transient and steady-state situations. The real time control program was developed in C language, possibilish verify the algorithm performance in the 2,2kW didatic experimental system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose a Geographical Information System that can be used as a tool for the treatment and study of problems related with environmental and city management issues. It is based on the Scalable Vector Graphics (SVG) standard for Web development of graphics. The project uses the concept of remate and real-time mar creation by database access through instructions executed by browsers on the Internet. As a way of proving the system effectiveness, we present two study cases;.the first on a region named Maracajaú Coral Reefs, located in Rio Grande do Norte coast, and the second in the Switzerland Northeast in which we intended to promote the substitution of MapServer by the system proposed here. We also show some results that demonstrate the larger geographical data capability achieved by the use of the standardized codes and open source tools, such as Extensible Markup Language (XML), Document Object Model (DOM), script languages ECMAScript/ JavaScript, Hypertext Preprocessor (PHP) and PostgreSQL and its extension, PostGIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The public illumination system of Natal/RN city presents some recurring problems in the aspect of monitoring, since currently is not possible to detect in real time the light bulbs which are on throughout the day, or those which are off or burned out, at night. These factors depreciate the efficiency of the services provided, as well as, the use of energetic resources, because there is energetic waste and, consequently, financial resources that could be applied at the own public system illumination. The purpose of the work is create a prototype in substitution to the currently photoelectric relays used at public illumination, that have the same function, as well others: turn on or off the light bulbs remotely (control flexibility by the use of specifics algorithms supervisory), checking the light bulbs status (on or off) and wireless communication with the system through the ZigBee® protocol. The development steps of this product and the tests carried out are related as a way to validate and justify its use at the public illumination

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Laboratório de Sistemas Inteligentes do Departamento de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte - UFRN -tem como um de seus projetos de pesquisa -Robosense -a construção de uma plataforma robótica móvel. Trata-se de um robô provido de duas rodas, acionadas de forma diferencial, dois braços, com 5 graus de liberdade cada, um cinturão de sonares e uma cabeça estéreo. Como objetivo principal do projeto Robosense, o robô deverá ser capaz de navegar por todo o prédio do LECA, desviando de obstáculos. O sistema de navegação do robô, responsável pela geração e seguimento de rotas, atuará em malha fechada. Ou seja, sensores serão utilizados pelo sistema com o intuito de informar ao robô a sua pose atual, incluindo localização e a configuração de seus recursos. Encoders (sensores especiais de rotação) foram instalados nas rodas, bem como em todos os motores dos dois braços da cabeça estéreo. Sensores de fim-de-curso foram instalados em todas as juntas da cabeça estéreo para que seja possível sua pré-calibração. Sonares e câmeras também farão parte do grupo de sensores utilizados no projeto. O robô contará com uma plataforma composta por, a princípio, dois computadores ligados a um barramento único para uma operação em tempo real, em paralelo. Um deles será responsável pela parte de controle dos braços e de sua navegação, tomando como base as informações recebidas dos sensores das rodas e dos próximos objetivos do robô. O outro computador processará todas as informações referentes à cabeça estéreo do robô, como as imagens recebidas das câmeras. A utilização de técnicas de imageamento estéreo torna-se necessária, pois a informação de uma única imagem não determina unicamente a posição de um dado ponto correspondente no mundo. Podemos então, através da utilização de duas ou mais câmeras, recuperar a informação de profundidade da cena. A cabeça estéreo proposta nada mais é que um artefato físico que deve dar suporte a duas câmeras dedeo, movimentá-las seguindo requisições de programas (softwares) apropriados e ser capaz de fornecer sua pose atual. Fatores como velocidade angular de movimentação das câmeras, precisão espacial e acurácia são determinantes para o eficiente resultado dos algoritmos que nesses valores se baseiam

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several methods of mobile robot navigation request the mensuration of robot position and orientation in its workspace. In the wheeled mobile robot case, techniques based on odometry allow to determine the robot localization by the integration of incremental displacements of its wheels. However, this technique is subject to errors that accumulate with the distance traveled by the robot, making unfeasible its exclusive use. Other methods are based on the detection of natural or artificial landmarks present in the environment and whose location is known. This technique doesnt generate cumulative errors, but it can request a larger processing time than the methods based on odometry. Thus, many methods make use of both techniques, in such a way that the odometry errors are periodically corrected through mensurations obtained from landmarks. Accordding to this approach, this work proposes a hybrid localization system for wheeled mobile robots in indoor environments based on odometry and natural landmarks. The landmarks are straight lines de.ned by the junctions in environments floor, forming a bi-dimensional grid. The landmark detection from digital images is perfomed through the Hough transform. Heuristics are associated with that transform to allow its application in real time. To reduce the search time of landmarks, we propose to map odometry errors in an area of the captured image that possesses high probability of containing the sought mark