33 resultados para Proteína Adaptadora de Sinalização NOD2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micronutrient deficiencies affect individuals mainly in developing countries, where vitamin A deficiency is a public health problem worldwide more worrying, especially in groups with increased physiological needs such as children and women of reproductive age. Vitamin A is supplied to the body through diet and has an important role in the visual process, cell differentiation, maintenance of epithelial tissue, reproductive and resistance to infection. The literature has demonstrated the relationship between vitamin A and diabetes, including gestational, leading to a risk to both mother and child. Gestational diabetes is any decrease in glucose tolerance of variable magnitude diagnosed each the first time during pregnancy, and may or may not persist after delivery. Insulin resistance during pregnancy is associated with placental hormones, as well as excess fat. Studies have shown that retinol transport protein produced in adipose tissue in high concentrations, this would be associated with resistance by interfering with insulin signaling. Therefore, this study aimed to evaluate the concentration of retinol in serum and colostrum from healthy and diabetic mothers in the immediate postpartum period. One hundred and nine parturient women were recruited, representing seventy-three healthy and thirty-six diabetic. Retinol was extracted and subsequently analyzed by High Performance Liquid Chromatography. Among the results highlights the mothers with gestational diabetes were older than mothers healthy, had more children and a higher prevalence of cases of cesarean section. Fetal macrosomia was present in 1.4% of healthy parturient women and in 22.2% of diabetic mothers. The maternal serum retinol showed an average of 39.7 ± 12.5 mg/dL for healthy parturients 35.12 ± 15 mg/dL for diabetic and showed no statistical difference. It was observed that in the group of diabetic had 17% vitamin A deficiency, whereas in the healthy group, only 4% of the women were deficentes. Colostrum, the concentration of retinol in healthy was 131.3 ± 56.2 mg/dL and 125.3 ± 41.9 mg/dL in diabetic did not differ statistically. This concentration of retinol found in colostrum provides approximately 656.5 mg/day for infants born to healthy mothers and 626.5 mg/day for infants of diabetic mothers, based on a daily consumption of 500 mL of breast milk and need Vitamin A 400 mg/day, thus reaching the requirement of the infant. The diabetic mothers showed significant risk factors and complications related to gestational diabetes. Although no 11 difference was found in serum retinol concentration and colostrum among women with and without gestational diabetes, the individual analysis shows that parturients women with diabetes are 4.9 times more likely to develop vitamin A deficiency than healthy parturients. However, the supply of vitamin A to the newborn was not committed in the presence of gestational diabetes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in antibiotic therapy, bacterial meningitis (BM) remains with high mortality and morbidity rates in worldwide. One important mechanism associated to sequels during disease is the intense inflammatory response which promotes an oxidative burst and release of reactive oxygen species, consequently leading to cell death. Activation of DNA repair enzymes during oxidative stress has been demonstrated in several neurological disorders. APE1/Ref-1 is a multifunctional protein involved in DNA repair and plays a redox function on transcription factors such as NFkB and AP-1.The aim of this study was assess the role of APE1/Ref-1 on inflammatory response and the possibility of its modulation to reduce the sequels of the disease. Firstly it was performed an assay to measure cytokine in cerebrospinal fluid of patients with BM due to Streptococcus pneumoniae and Neisseriae meningitides. Further, a cellular model of inflammation was used to observe the effect of the inhibition of the endonuclease and redox activity of APE1/Ref-1 on cytokine levels. Additionally, APE1/Ref-1 expression in cortex and hippocampus of rat with MB after vitamin B6 treatment was evaluated. Altogether, results showed a similar profile of cytokines in the cerebrospinal fluid of patients from both pathogens, although IFNy showed higher expression in patients with BM caused by S. pneumoniae. On the other hand, inhibitors of APE1/Ref-1 reduced cytokine levels, mainly TNF-α. Reduction of oxidative stress markers was also observed after introduction of inhibitors in the LPS-stimulated cell. In the animal model, BM increased the expression of the protein APE1/Ref-1, while vitamin B6 promoted reduction. Thereby, this data rise important factors to be considered in pathogenesis of BM, e.g., IFNy can be used as prognostic factor during corticosteroid therapy, APE1/Ref-1 can be an important target to modulate the level of inflammation and VIII oxidative stress, and vitamin B6 seems modulates several proteins related to cell death. So, this study highlights a new understanding on the role of APE1/Ref-1 on the inflammation and the oxidative stress during inflammation condition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.