137 resultados para Nanopartículas magnéticas de glicidila


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan nanoparticles have been used in several systems for the controlled release of drugs. The aim of this study was to obtain and characterize chitosan nanoparticles prepared by the method of coacervation / precipitation using sodium sulfate at different concentrations as the crosslinking agent. The characterization was done using zeta potential and small angle Xray scattering, SAXS. The dispersions of chitosan were obtained at pH 1 and pH = 3. The results of zeta potential at pH = 1 ranged from +64.8 to +29.27 mV and for pH = 3 they varied from +72.4 to +23.48 mV, indicating that the chain of chitosan is positively charged in acidic pH and the behavior of nanoparticles in terms of surface charge was independent of pH. However, the results indicated a dependence of particle size in relation to pH. This difference in behavior was explained by the influence of enthalpic and entropic components

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Were synthesized systems Ni0,5Zn0,5Fe2O4, i0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 and Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350, 500, 900 and 1100ºC/3h was accompanied by X-ray diffraction using the Rietveld refinement to better identify the structures formed. The materials were also analyzed by scanning electron microscopy, magnetic measurements and analysis of the reflectivity of the material. The samples calcined at different temperatures showed an increase of crystallinity with increasing calcination temperature, verifying that for some compositions at temperatures above 500°C precipitates of second phase such as hematite and CuO. The compositions of manganese present in the structure diffusion processes slower due to the ionic radius of manganese is greater than for other ions substitutes, a fact that delays the stabilization of spinel structure and promotes the precipitation of second phase. The compositions presented with copper precipitation CuO phase at a temperature of 900 and 1100ºC/3h This occurs according to the literature because the concentration of copper in the structure is greater than 0.25 mol%. The magnetic measurements revealed features of a soft ferrimagnetic material, resulting in better magnetic properties for the NiZn ferrite and NiCuZnMg at high temperatures. The reflectivity measurements showed greater absorption of electromagnetic radiation in the microwave band for the samples calcined at 1100ºC/3h, which has higher crystallite size and consequently the formation of multi-domain, increasing the magnetization of the material. The results of absorption agreed with the magnetic measurements, indicating among the ferrites studied, those of NiZn and NiCuZnMg as better absorbing the incident radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferrite composition Ni1 - xCoxFe2O4 (0 ≤ x ≤ 0.75) were obtained by the method of microwave assisted synthesis and had their structural and magnetic properties evaluated due to the effect of the substitution of Ni by Co. The compounds were prepared: according to the concept of chemical propellants and heated in the microwave oven with power 7000kw. The synthesized material was characterized by absorption spectroscopy in the infrared (FTIR), Xray diffraction (XRD) using the Rietveld refinement, specific surface area (BET) , scanning electron microscopy (SEM) with aid of energy dispersive analysis (EDS) and magnetic measurements (MAV). The results obtained from these techniques confirmed the feasibility of the method of synthesis employed to obtain the desired spinel structure, the ferrite, nickel ferrite as for nickel doped with cobalt. The results from XRD refinement ally showed the formation of secondary phases concerning stages α - Fe2O3, FeO, (FeCo)O e Ni0. On the other hand, there is an increase in crystallite size with the increase of cobalt in systems, resulting in an increased crystallinity. The results showed that the BET systems showed a reduction in specific surface area with the increase of cobalt and from the SEM, the formation of irregular porous blocks and that the concentration of cobalt decreased the agglomerative state of the system. The magnetic ferrites studied showed different characteristics according to the amount of dopant used, ranging from a very soft magnetic material (easy magnetization and demagnetization ) - for the system without cobalt - a magnetic material with a little stiffer behavior - for systems containing cobalt. The values of the coercive field increased with the increasing growth of cobalt, and the values of saturation magnetization and remanence increased up to x = 0,25 and then reduced. The different magnetic characteristics presented by the systems according to the amount of dopant used, allows the use of these materials as intermediates magnetic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Were synthesized spinel-type ferrites with general formula Ni0,8Mg0.2-xMxFe2O4, where M represents the doping Mn, Co or Mn + Co simultaneously, x ranges for the values 0.02, 0.05 and 0.1. The value of x was divided by 2 in cases where M equals Mn and Co conjugates. We used the citrate precursor method and heat treatment to obtain the phases at 1100°C. The materials were characterized by XRD, TGA/ DTGA, SEM, MAV and reflectivity measurements by the method of waveguide. Powders to 350°C/3.5 h were crystalline and nanosized. According to the results this temperature all powders have a percentage of ferrite phase over 90%. The composition had the addition of Mn and Co simultaneously showed a higher percentage of secondary phase NiO, 5.8%. The TGA/DTGA curves indicate that this sample reached phase (s) crystalline (s) at lowest temperatures. The X-ray diffractograms of the samples calcined at 350°C and 1100°C were treated with the Rietveld refinament technique. The powders calcined at 1100 °C/3h in air show to be 100% except spinel phase composition with 0.02 doping. The micrographs show clusters of particles with sizes smaller than 1 μm in calcination temperature of 1100°C which agreed with the result of Rietveld refinement. In the compositions doped with Mn were higher values of magnetization (45.90 and 53.20 Am2/kg), which did not cause high microwave absorption. The theoretical calculation of magnetization (MT) was consistent with the results, considering that there was agreement between the increase of magnetization experimental and theoretical. It was observed that there was the interrelation of the final effect of absorption with the thickness of MARE, the composition of ferrimagnetic materials and in particular the specific values of frequency. The analysis shows that the reflectivity increases in the concentration of cobalt increased the frequency range and also for absorption 10.17 GHz and 84%, respectively. The best result of chemical homogeneity and the value of 2.96 x 10-2 tesla coercive field were crucial for high performance ferrite absorber with 0.1 cobalt. The Cobalt has high magnetocrystalline anisotropy, it is associated with an increased coercive field, Hc. Therefore, this property improves the results of reflectivity of spinel ferrites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellites signals present disturbances (scintillations), due to presence of irregularities in the ionospheric plasma. In the present work, we dedicate to the study of the attenuation of these scintillations that is, an improvement in the signal, during the main magnetic storm phase during the period of October 2006 to February 2007. Using amplitude of scintillation 1.5GHz (L1) data of the net of satellites GPS, in the ionospheric station of Natal (5.84o S, 35.20o O, -20o dip) and geomagnetic indices, during the minimum solar cycle (referred to as cycle 23), demonstrating its anti-correlation between magnetic activity (Kp) and index of scintillation () (Bonelli2005 method, that works for solar maximum, Bonelli(2005)). These results show that these storms correspond to category I of Aarons (1991). The magnetic storms can generate irregularities when the electric feld of penetration eastward on the pre-reversal hour intensificating that and can too generate irregularities on midnight and sunlight period. The limitation of the method applied here is that it is not considering some storms that had also occurred during equinox and summer in the Brazilian region. For this reason, we will use additional data of the stations of São João de Cariri (Imager and Photometer) and of the station at Fortaleza (Digissonde data), as aid to analyze these storms. The storms that had been left out by the applied method, fit in the other two categories of Aarons, with one only exception (storm of January, 02). We show that in the day of the main phase of the magnetic storm, and with presence of bubbles (according to data of the Imager and Photometer), the speed of vertical drift ~E ~B (hF=t) is below 20m/s, that is the threshold found for Anderson al., (2004) (>20m/s as condition favorable to the formation of irregularities and increase in the scintillation index). This reduction of the speed is due to solar minimum

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferromagnetic materials play an important role in the development of various electronic devices and, have great importance insofar as they may determine the efficiency, cost and, size of the devices. For this reason, many scientific researches is currently focused on the study of materials at ever smaller scales, in order to understand and better control the properties of nanoscale systems, i.e. with dimensions of the order of nanometers, such as thin film ferromagnetic. In this work, we analyze the structural and magnetic properties and magnetoresistance effect in Permalloy-ferromagnetic thin films produced by magnetron sputtering. In this case, since the magnetoresistance effect dependent interfaces of thin films, this work is devoted to the study of the magnetoresistance in samples of Permalloy in nominal settings of: Ta[4nm]/Py[16nm]/Ta[4nm], Ta[4nm]/Py[16nm]/O2/Ta[4nm], Ta[4nm]/O2/Py[16nm]/Ta[4nm], Ta[4nm]/O2/Py[16n m]/O2/Ta[4nm], as made and subjected to heat treatment at temperatures of 160ºC, 360ºC e 460ºC, in order to verify the influence of the insertion of the oxygen in the layer structure of samples and thermal treatments carried out after production of the samples. Results are interpreted in terms of the structure of the samples, residual stresses stored during deposition, stresses induced by heat treatments and magnetic anisotropies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Co2FeAl (CFA) and trilayers with CFA/M/CFA, where M is Au or Ag, produced by magnetron sputtering onto glass and oriented (MgO (100)) substrates were investigated. The structural, magnetic static and magnetic dynamics properties were analyzed by distinct experimental techniques. Through X-ray diffraction was observed an A2 phase for the samples (completely disordered), where the atoms are randomly located in the lattice. The static magnetic behavior, in some samples, reveal a plateau behavior generated by a biphasic system. The magnetoimpedance measurements were performed by varying the angle between the external magnetic field and current with respect of anisotropy direction. For this reason, the MI results show a asymmetric magnetoimpedance (AMI) behavior. For the single and trilayers samples with 500 nm-thick, the AMI effect is more evident in comparison with samples with 1000 nm-thick. Therefore, in this work was stablished a route to produce Heusler alloy samples with A2 phase in thin film geometry onto amorphous and oriented substrates, and due to structural disorder was possible to study the hysteretic and MI asymmetric effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Located on the western edge of the Brazilian northeast, the Parnaíba Basin is an intra cratonic basin with oil production. This study aims at understanding its genesis and evolution, using aeromagnetic and gravity data. We used the spectral analysis of aeromagnetic data to map the depth to the bottom of the magnetic sources in order to assimilate this depth with the depth of the Curie isotherm, and infer the geothermal gradient. Using the spectral analysis technique, we succeeded in mapping the surface of the depth to the bottom of magnetic sources (SBFM), which marks the depth that occur magnetization. In the Parnaíba Basin the SBFM presented depths around -20,5 and -28,5 , which was consistent with an inversion of the same dataset using the technique of Magnetization Vector Inversion (MVI). Furthermore, SBFM topography correlates well with Moho depth, which was estimated from satellite gravimetric data from the GOCE mission (Gravity Field and Steady-State Ocean Circulation Explorer). Assuming that SBFM coincides with the Curie isotherm of magnetite (ICM), defined as the surface at which magnetite ( ) looses its ferromagnetic properties, it was possible to estimate the geothermal gradient. The geothermal gradient in the basin showed values between 19.2 and 26.5 , allowing to estimate the heat flow for the Parnaíba basin after assuming a conductivity of 2.69 . The resulting heat flow values ranged between 51.6 and 71.3 , which is consistent with values found in other works throughout the South American continent. Lithospheric thickness using an empirical relationship, finding values between -65.8 and -89.2 . We propose that thermal structure of Parnaíba basin is influenced by a deep thermal anomaly. This anomaly has heated the lithosphere beneath the basin and has resulted in relatively thin values for the lithospheric thickness and relatively high surface heat flow values. The origin of the anomaly is not clear, but the correlation between Curie depth and Moho topography, suggests that tectonic extension processes could have played a role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ionospheric Disturbances – TIDs – are irregularities on the ionospheric plasma propagating in speeds in the order of tens to a few hundreds of meters per second. This present study detected and characterized the TIDs of LSTIDs (Large Scale Travelling Ionospheric Disturbance) type at low latitudes during intense geomagnetic storms and its propagation over the Brazilian sector. This work also shows as being the first to report systematically propagation of gravity waves over Natal. For this purpose, we used ionospheric records obtained from type of digisonde CADI (Canadiam Advanced Digital Ionosonde) located in Natal and the type DSP (Digisonde Portable Souder) located in Cachoeira Paulista, Fortaleza and São Luis, whereupon we used a dataset of 12 years collected by INPE (National Institute of Space Research). In this study, both calm days, that preceded the storms, and the geomagnetically disturbed days were related during the years 2000 and 1012, which cover a period of maximum and minimum solar activity. And it is presented the variations that happened in the electron density from region F of the ionosphere over the Brazilian sector, especially near the Equator (Natal, Fortaleza and São Luis), caused by ionospheric disturbances in the equatorial region during intense geomagnetic storms, because, as we know of the literature in this area, this phenomenon contributes positively to the emergence of LSTIDs in the auroral region, which may move to the equatorial region where a few cases have been documented and studied systematically. From the observation of signatures if TIDs in ionogram records, a study of the morphology of these events was performed and compared with the main characteristics of the wave of this phenomenon during great magnetic storms, i.e., DST <(-200 nT) and KP > 6. Thus, we obtained the main characteristics of TIDs over our region, i.e., period, vertical wavelength, phase and propagation speed, as well as the delay of these disturbances compared to the beginning of the magnetic storms to the Brazilian Sector.