37 resultados para Monitoramento farmacoterapêutico
Resumo:
We propose a mechatronic system for monitoring water quality in rivers, lakes, dams and sea, able to perform the acquisition, processing and presentation of data via the web in real time, in order to facilitate analysis quickly and needs by interested communities. The hardware architecture and software monitoring system has been developed so that it can be generic, that is, supporting different applications. Nevertheless, as a validation of the proposed system, we built a prototype that operates embarked on an autonomous robotic sailboat, a responsible platform for collecting the data in multiple predefined points from a ground station with a planning system navigation. This final application combines the advantages of autonomy of a robotic sailboat with the need for fast and accurate monitoring of water quality, in addition to the use of an autonomous robotic sailboat unmanned facilitate the development of other research in this area.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The general objective of this thesis has been seasonal monitoring (quarterly time scale) of coastal and estuarine areas of a section of the Northern Coast of Rio Grande do Norte, Brazil, environmentally sensitive and with intense sediment erosion in the oil activities to underpin the implementation of projects for containment of erosion and mitigate the impacts of coastal dynamics. In order to achieve the general objective, the work was done systematically in three stages which consisted the specific objectives. The first stage was the implementation of geodetic reference infrastructure for carrying out the geodetic survey of the study area. This process included the implementation of RGLS (Northern Coast of the RN GPS Network), consisting of stations with geodetic coordinates and orthometric heights of precision; positioning of Benchmarks and evaluation of the gravimetric geoid available, for use in GPS altimetry of precision; and development of software for GPS altimetry of precision. The second stage was the development and improvement of methodologies for collection, processing, representation, integration and analysis of CoastLine (CL) and Digital Elevation Models (DEM) obtained by geodetic positioning techniques. As part of this stage have been made since, the choice of equipment and positioning methods to be used, depending on the required precision and structure implanted, and the definition of the LC indicator and of the geodesic references best suited, to coastal monitoring of precision. The third step was the seasonal geodesic monitoring of the study area. It was defined the execution times of the geodetic surveys by analyzing the pattern of sediment dynamics of the study area; the performing of surveys in order to calculate and locate areas and volumes of erosion and accretion (sandy and volumetric sedimentary balance) occurred on CL and on the beaches and islands surfaces throughout the year, and study of correlations between the measured variations (in area and volume) between each survey and the action of the coastal dynamic agents. The results allowed an integrated study of spatial and temporal interrelationships of the causes and consequences of intensive coastal processes operating in the area, especially to the measurement of variability of erosion, transport, balance and supply sedimentary over the annual cycle of construction and destruction of beaches. In the analysis of the results, it was possible to identify the causes and consequences of severe coastal erosion occurred on beaches exposed, to analyze the recovery of beaches and the accretion occurring in tidal inlets and estuaries. From the optics of seasonal variations in the CL, human interventions to erosion contention have been proposed with the aim of restoring the previous situation of the beaches in the process of erosion.
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands
Resumo:
The human activities responsible for the ambient degradation in the modern world are diverse. The industrial activities are preponderant in the question of the impact consequences for brazilian ecosystems. Amongst the human activities, the petroliferous industry in operation in Potiguar Petroliferous Basin (PPB) displays the constant risk of ambient impacts in the integrant cities, not only for the human populations and the environment, but also it reaches the native microorganisms of Caatinga ground and in the mangrove sediment. Not hindering, the elaboration of strategies of bioremediation for impacted areas pass through the knowledge of microbiota and its relations with the environment. Moreover, in the microorganism groups associated to oil, are emphasized the sulfate-reducing prokaryotes (SRP) that, in its anaerobic metabolism, these organisms participate of the sulfate reduction, discharging H2S, causing ambient risks and causing the corrosion of surfaces, as pipelines and tanks, resulting in damages for the industry. Some ancestries of PRS integrate the Archaea domain, group of microorganisms whose sequenced genomes present predominance of extremophilic adaptations, including surrounding with oil presence. This work has two correlated objectives: i) the detection and monitoring of the gene dsrB, gift in sulfate-reducing prokaryotes, through DGGE analysis in samples of mDNA of a mangrove sediment and semiarid soil, both in the BPP; ii) to relate genomic characteristics to the ecological aspects of Archaea through in silico studies, standing out the importance to the oil and gas industry. The results of the first work suggest that the petrodegraders communities of SRP persist after the contamination with oil in mangrove sediment and in semiarid soil. Comparing the populations of both sites, it reveals that there are variations in the size and composition during one year of experiments. In the second work, functional and structural factors are the probable cause to the pressure in maintenance of the conservation of the sequences in the multiple copies of the 16S rDNA gene. Is verified also the discrepancy established between total content GC and content GC of the same gene. Such results relating ribosomal genes and the ambient factors are important for metagenomic evaluations using PCR-DGGE. The knowledge of microbiota associated to the oil can contribute for a better destination of resources by the petroliferous industry and the development of bioremediation strategies. Likewise, search to lead to the best agreement of the performance of native microbiota in biogeochemical cycles in Potiguar Petroliferous Basin ecosystem